Non-Ductal Neoplasms of the Pancreas

M. Lisa Zhang, MD

Assistant Professor of Pathology Harvard Medical School Massachusetts General Hospital

Oncocytic Variants of PanNET More aggressive group Oncocytic (8) Hepatoid (9) Lipid-rich (5) Discohesive, sheet-like pattern with plasmacytoid cells (14) Overall Less aggressive group Hepatoid Oncocytic Pleomorphic (9) Paraganglioma-like (10) Ductulo-insular (7) Overall Indeterminate group Mammary tubulo-lobular carcinoma-like (10) Pseudoglandular (6) Peliotic/angiomatous (11) Sclerosing (4) Overall Xue Y, Reid MD, Pehlivanoglu B, et al. Endocr Pathol 2020;31(3):239-53.

Table 2 Comparison between more aggressive group and the conort			
	More aggressive group	Overall cohort	p value
Median size (cm)	5.0	2.5	< 0.000
Median Ki67 (%)	5.3	3.0	0.12
IN and distant metastatic rate at the surgery and during the follow-up (%)	96%	45%	< 0.000
Table 4 Comparison between more and less aggressive groups			
Table 4 Comparison between more and less aggressive groups	More aggressive	Less aggressive	<i>p</i> value
Table 4 Comparison between more and less aggressive groups Median size (cm)	More aggressive 5.0	Less aggressive	<i>p</i> value < 0.000
Table 4 Comparison between more and less aggressive groups Median size (cm) Median Ki67 (%)	More aggressive 5.0 5.3	Less aggressive 1.6 2.3	<i>p</i> value < 0.000 0.001

	Mitotic Count/2 mm ²	Ki-67 (%)
Well-differentiated neuroendocrine tumors (NET)		
Grade 1	<2	<3
Grade 2	2-20	3-20
Grade 3	>20	>20
Poorly differentiated neuroendocrine carcinomas (NEC)		
Small cell type	. 20	. 20
Large cell type	>20	>20

Grading PanNENs on resections

- CAP recommendations for *resection specimens*:
 - <u>Mitotic rate:</u> number of mitoses (at 40X magnification) per 2 mm², at least 10 mm² evaluated in the most mitotically active part of the tumor.
 - For microscope with field number (FN) = 22
 - Field diameter (mm) = FN/magnification = 22/40 = 0.55 mm
 - Field area (mm²) = πr^2 = 3.14*(0.55/2)² = 0.238 mm²
 - Recommended evaluation of 10 mm²/0.238 mm² = 42 HPF
 - Minimum evaluation of 2 mm²/0.238 mm² = 8 HPF

	Mitotic Count/2 mm ²	Ki-67 (%)
Nell-differentiated neuroendocrine tumors (NET)		
Grade 1	<2	<3
Grade 2	2-20	3-20
Grade 3	>20	>20
Poorly differentiated neuroendocrine carcinomas (NEC)		
Small cell type	. 20	× 20
Large cell type	>20	>20

Grading PanNENs on resections

- CAP recommendations for *resection specimens*:
 - <u>Mitotic rate:</u> number of mitoses (at 40X magnification) per 2 mm², at least 10 mm² evaluated in the most mitotically active part of the tumor.
 - For microscope with field number (FN) = 22
 - Field diameter (mm) = FN/magnification = 22/40 = 0.55 mm
 - Field area (mm²) = πr^2 = 3.14*(0.55/2)² = 0.238 mm²
 - Recommended evaluation of 10 mm²/0.238 mm² = 42 HPF
 - Minimum evaluation of 2 mm²/0.238 mm² = 8 HPF
 - <u>Ki67 index:</u> minimum of 500 tumor cells be counted to determine the Ki67 index (some have recommended counting at least 2000 cells)

What about on cell blocks & small biopsies?

Grading PanNENs (WHO 5 th Edition)

	Mitotic Count/2 mm ²	Ki-67 (%)
Well-differentiated neuroendocrine tumors (NET)		
Grade 1	<2 1	<3
Grade 2	2-20	3-20 3.4%
Grade 3	>20	>20
Poorly differentiated neuroendocrine carcinomas (NEC)		
Small cell type	>20	>20
Large cell type	>20	>20

	Mitotic Count/2 mm ²	Ki-67 (%)
Well-differentiated neuroendocrine tumors (NET)		
Grade 1	<2	<3
Grade 2	2-20	3-20
Grade 3	>20	>20
Poorly differentiated neuroendocrine carcinomas (NEC)		
Small cell type	. 20	. 20
Large cell type	>20	>20

Table 1. Distinction BDifferentiated Pancreati	etween Well-Differentiated Pancreatic Neuroendo c Neuroendocrine Carcinoma (PD-PanNEC) by Cli	crine Tumor (WD-PanNET) (G3) and Poorly nicopathologic and Molecular Characteristics
	WD-PanNET (G3)	PD-PanNEC
Clinical assessment		
Presentation	Either incidental findings or mildly symptomatic	High-grade malignancy–associated symptoms with rapid disease progression
Radiology	Diffuse avidity on SSRS	Negative or weak/focal activity on SSRS
	PET finding may be positive but heterogenous	PET finding positive with high SUV
Biomarkers	Elevated neuroendocrine markers (chromogranin-A)	Elevated carcinoma markers (CA 19.9)
Pathologic assessment	A spectrum of tumor grades: a component lower-grade tumor; or prior lower-grade tumor in another specimen	Homogenously high grade: no low-grade component; a component of ductal adenocarcinoma
Ancillary tests		
Immunohistochemistry	Loss of Daxx or Atrx expression	Loss to Rb, SMAD4, and/or abnormal p53 expression
	Expression of SSR ₂	Uncommon SSR ₂ expression
Gene mutations	DAXX/ATRX and/or MEN1, PI3K/mTOR (TSC1/2, PTEN) >40%	TP53, SMAD4, KRAS, RB1 in most

Tang LH. Arch Pathol Lab Med. 2020

PanNET, grade 3

- Well-differentiated
 - Still looks neuroendocrine
- Cytomorphology
 - Increased pleomorphism
 - Increased N/C ratio
 - "Salt-and-pepper" chromatin
- Definitive grading should only be performed on adequate tissue (+/- ancillary studies)

"Integrated	d diagno	osis"
Molecular Alterations	G3 PanNET	PanNEC
TP53*	35%	88%
p53 IHC (mutant)	24%	71%
Rb	0%	47%
Rb IHC (loss)	0%	41%
CDKN2A (p16)*	41%	29%
p16 IHC (diffuse)	0%	65%
ATRX	24%	0%
ATRX IHC (loss)	18%	0%
DAXX	47%	0%
MEN1	71%	0%
SMAD4	6% (1 case)	41%

*Mutually exclusive in G3 PanNET vs. co-altered in PanNEC (30%)

Acinar cell carcinoma (ACC) 1-2% of adult pancreatic neoplasms, 15% of pediatric Mean age ~60 years, M>F 2:1 Can occur anywhere within pancreas Usually large (mean 10cm) Highly aggressive neoplasm 50% of patients have metastatic disease at presentation 5-year survival 5-30%, depends on resectability

Final diagnosis

- "Non-ductal neoplasm, favor acinar cell carcinoma."
- Morphology compatible/suggestive of ACC
- Mitoses and moderately high Ki67 > 30% (based on very limited tissue)
 ACC more common than grade 3 PanNET
- Patchy positivity for trypsin, BCL10, synaptophysin, and chromogranin
- Scant biopsy cellularity and equivocal IHC pattern precludes definitive diagnosis

Final diagnosis

- "Carcinoma with acinar and neuroendocrine differentiation."
- High-grade morphology
- Mitoses and very high Ki67 > 50%
- Diffuse positivity for trypsin, BCL10, synaptophysin, and chromogranin
- Can suggest diagnosis of "mixed acinar-neuroendocrine carcinoma" but definitive diagnosis requires examination of resection specimen

Acinar and neuroendocrine markers

- Acinar markers: BCL10, trypsin, (chymotrypsin)
- Neuroendocrine markers: synaptophysin, chromogranin, INSM1, (CD56)
- 30-55% of ACCs have scattered synaptophysin/chromogranin+ neuroendocrine cells (<<30% of tumor cells)
- PanNETs commonly express acinar markers in <<30% of tumor cells

Acinar cell carcinoma	Mixed acinar-neuroendocrine carcinoma
46/48 (96%)	11/12 (92%)
40/47 (85%)	11/12 (92%)
0/49 (0%)	12/12 (100%)
0/49 (0%)	12/12 (100%)
	Acinar cell carcinoma 46/48 (96%) 40/47 (85%) 0/49 (0%) 0/49 (0%)

Ohike N et al. Virchows Arch. 2004 La Rosa S et al. Am J Surg Pathol. 2012

Tumor types, case ID	BCL10 score (%)	Trypsin score (%)	Synaptophysin score (%)	Chromogranin score (%)	β-Catenin nuclear score (%)
ACC					
1	3+(100)	1+(50)	0 (-)	0 (-)	1+ (5)
2	3+(100)	2+(70)	1+ (5)	0 (-)	0 (-)
3	3+(100)	3+(100)	0 (-)	0 (-)	n.a.
4	3+(100)	2+(80)	1+ (10)	n.a.	n.a.
5	3+ (100)	2+ (60)	1+ (10)	0 (-)	n.a.
6	3+ (100)	1+(30)	1+ (20)	0 (-)	1+ (5)
7	3+ (100)	1+ (<5)	1+ (5)	0 (-)	0 (-)
8	3+ (100)	2+ (60)	0 (-)	n.a.	0 (-)
9	3+ (100)	3+ (80)	0 (-)	0 (-)	n.a.
10	3+ (100)	2+ (100)	0 (-)	0 (-)	1+ (5)
11	3+ (100)	2+ (100)	1+ (50)	0 (-)	0 (-)
12	3+ (100)	3+ (70)	0 (-)	0 (-)	n.a.
MANEC					
1	3+ (100)	3+ (80)	2+ (70)	1+ (30)	n.a.
2	3+ (100)	3+ (100)	2+ (50)	3+ (60)	0 (-)
3	3+ (100)	3+ (80)	1+ (40)	1+ (10)	0 (-)
4	3+ (100)	1+ (<5)	3+ (80)	2+ (60)	n.a.
5	3+ (100)	2+ (60)	2+ (70)	2+ (60)	0 (-)
6	3+ (100)	2+ (70)	1+ (40)	0 (-)	0 (-)
7	3+ (100)	3+ (60)	1+ (40)	1+ (30)	0 (-)
8	3+ (100)	1+ (40)	2+ (60)	0 (-)	0 (-)
9	3+ (100)	3+ (80)	1+ (40)	3+ (60)	0 (-)

Immunophenotyping results on both fine-needle aspiration cytology samples and paired histological specimens.

Solid pseudopapillary neoplasm (SPN)

- 2-5% of all pancreatic neoplasms
- ~90% female, mean age 28 years
- Can arise anywhere in pancreas, mean 10cm
- Large solid and cystic neoplasm, often radiologically diagnosed
- Low grade malignancy, usually indolent and completely cured with resection
 - 10-15% patients have metastatic disease at diagnosis limited to liver and peritoneum (still relatively good prognosis and die of other causes)

SPN Cytomorphology

- Dispersed cells
- Can have prominent, branching vessels
- Monomorphic nuclei, sometimes grooves
 - Falling off edge of vessels

Pancreatoblastoma

- Two-thirds of cases present in children <10 years old (mean 4 years), but one-third presents in adults
- 25% of pediatric pancreatic neoplasms
- Arise equally in head/tail (large neoplasm, mean 10cm)
- Most sporadic; genetic syndromes (Beckwith-Wiedemann syndrome and familial adenomatous polyposis)
- Variable prognosis
 - Children: resectable tumors good prognosis, metastases bad prognosis
 - Adults: rapidly fatal like ACCs

Lymphomas in the pancreas

- Mean age 55-65, M>F
- Primary pancreatic lymphoma accounts for <1% of pancreatic neoplasms
 - Primary clinical presentation within pancreas + bulk of disease located within pancreas
- Most are secondary non-Hodgkin B cell lymphomas → >2/3 are diffuse large B cell lymphoma (DLBCL)
- Most common in the pancreatic head, can be located throughout the pancreas and multiple in number

Splenule/Ectopic spleen

- Occurs in ~15% of general population
 - 80% splenic hilum, 20% pancreatic tail
- Includes *accessory spleen* (congenital) and *splenosis* (acquired auto-implants after abdominal trauma or splenectomy)
- Well-circumscribed vascular nodule in the pancreatic tail, mimics panNET by imaging
- Cytology:
 - Polymorphous lymphoid tissue, often in aggregates/clusters
 - Blood vessels
 - CD8+ highlights the splenic littoral cells lining the vascular spaces

Summary

- Remember that pancreatic ductal carcinoma is still by far the most common pancreatic neoplasm (>90%)
- Of the non-ductal neoplasms, pancreatic neuroendocrine tumor (PanNET) is most likely to be encountered
 - Be aware of morphologic variants
 - Be careful with tumor grading on small tissue samples
- Definitive diagnosis of non-ductal neoplasms can be difficult without cell block/core biopsy, which is often needed for ancillary studies
 - Be familiar with the IHC patterns that can be encountered

Thank you!