Automation and Artificial Intelligence in Cytology

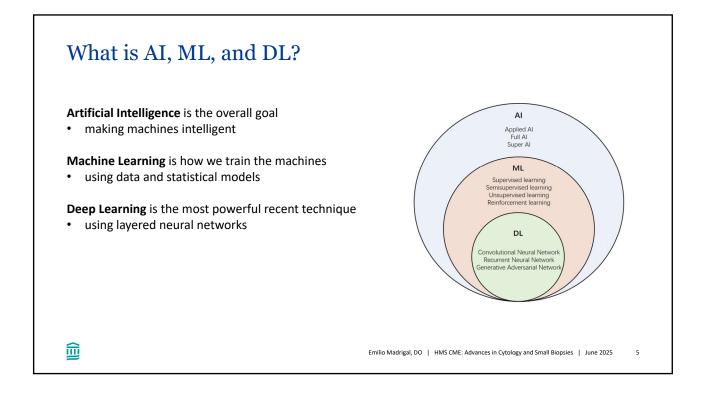
Emilio Madrigal, DO Assistant Professor of Pathology, Harvard Medical School

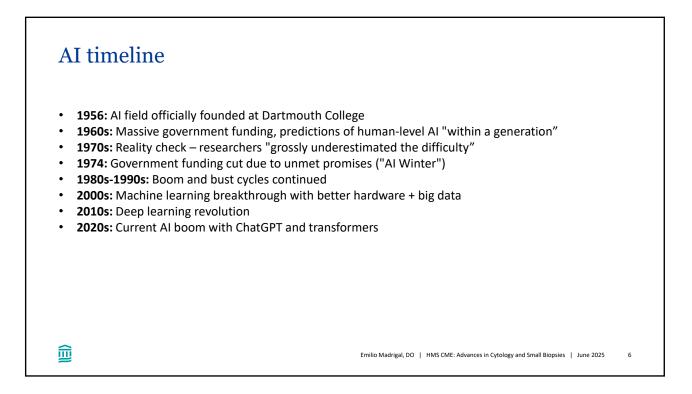
June 2025

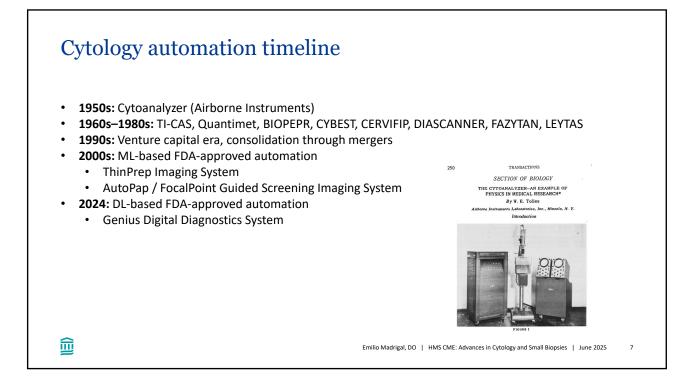
Disclosures

No relevant financial or personal disclosures related to this session.

圓

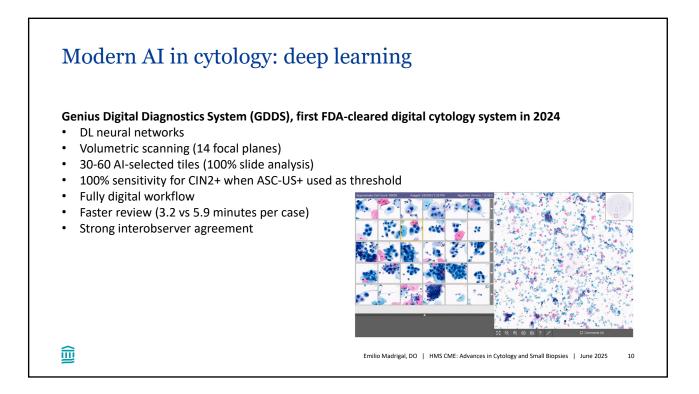

Learning objectives


- Understand the historical context of AI in cytology
- Recognize the key success factors that enabled cervical cancer screening automation
- Distinguish between different AI technologies: ML vs DL
- Evaluate current AI systems and their clinical performance
- Assess implementation challenges and best practices
- Apply evaluation frameworks for new AI tools


Emilio Madrigal, DO | HMS CME: Advances in Cytology and Small Biopsies | June 2025 3

4

<section-header> Determine the control of t



Parallel evolution – cytology and general AI

Period	Cytology automation	General AI development	Key parallels
1950s	Failed: Cytoanalyzer (Airborne Instruments)	Al field founded at Dartmouth College (1956)	Early optimism: both fields launched with high hopes
1960s—1970s	Multiple failed systems: TI-CAS, Quantimet, BIOPEPR, CERVIFIP, CYBEST, DIASCANNER, FAZYTAN, LEYTAS	Massive government funding, then reality check by 1974	Overpromising : both underestimated technical difficulty
1980s—1990s	Venture capital era, multiple company mergers needed	Boom and bust cycles, "AI Winter" periods	Market consolidation: survivor companies emerged from failures
2000s	First wave of success: ML-based FDA-approved automation, ThinPrep Imaging System (2003), FocalPoint Guided Screening Imaging System (2008)	Machine learning breakthrough with better hardware + big data	Technical convergence: hardware, algorithms, and data finally aligned
2010—2020s	Second wave of success: DL-based FDA-approved automation, Genius Digital Diagnostics System (2024)	Deep learning revolution, transformer architecture, ChatGPT boom	Modern Al integration: both fields now using deep learning

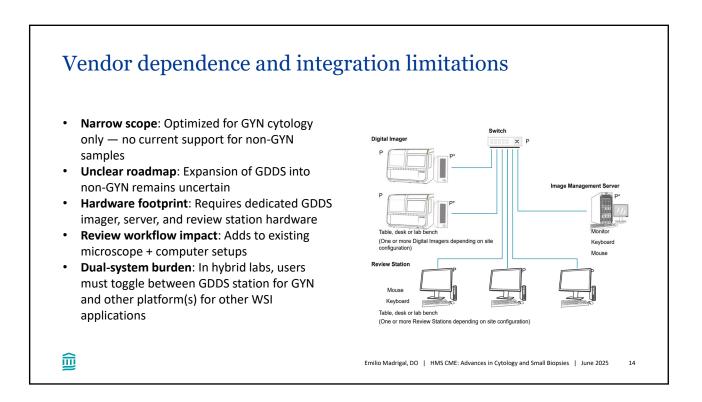
<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

AI evolution in cytology

Feature	Early AI: TIS	Modern AI: GDDS
FDA clearance	2003	2024
Al type	Machine learning	Deep learning
Al output	22 pre-selected fields	30–60 AI-selected image tiles
Slide coverage	~25% (22 fields of view)	100% with 14-plane volumetric scan
Review modality	Microscope-based	Digital workstation
Regulatory counting (CMS/CLIA max: 200/day)	0.5–1.5 slides depending on review	0.5 slide per case

Î

Emilio Madrigal, DO | HMS CME: Advances in Cytology and Small Biopsies | June 2025 11


Evidence from clinical and operational studies

Study	Key finding
Cantley et al. 2024	GDDS vs manual: 3.2 vs 5.9 min per case \rightarrow 46% faster
Ikenberg et al. 2023	GDDS vs TIS: 44.8 vs 89.9 sec per slide \rightarrow 45% faster
Harinath et al. 2024	100% sensitivity for CIN2+ (ASC-US+ threshold)
Harinath et al. 2025	100% sensitivity for CIN1+ (ASC-US+); 74.7% with LSIL+ threshold
Cantley et al. 2024	Diagnostic concordance: GDDS 62.1% vs manual 55.8%

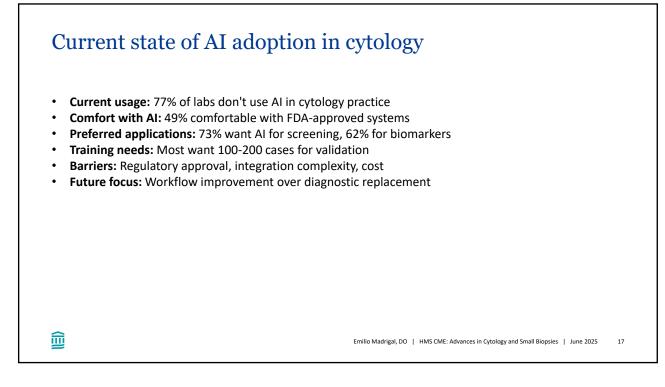
Implementation challenges: beyond performance metrics What the studies also show Training curve: 1.5-2 days vendor-provided training; 3K+ cases of experience Diagnostic shift: 26% of LSIL cases reclassified as ASC-US Context matters: Performance affected when HPV status unavailable Experience gap: Steady-state use (~18K prior cases) vs. early-stage adoption with minimal training Technical limitations: ~5% of slides failed digital scanning ٠ **Reality check** • Al isn't just "better"—it's different. Implementation affects workflow, interpretation, and expectations.

Emilio Madrigal, DO | HMS CME: Advances in Cytology and Small Biopsies | June 2025

13

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

AI for non-GYN cytology: barriers today, potential tomorrow

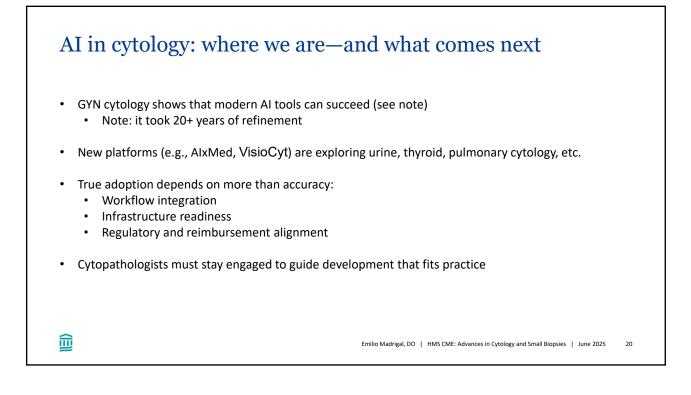

Current barriers:

- Low case volumes per institution
- Variable preparation methods
- Complex diagnostic criteria
- No FDA-cleared systems
- Unclear reimbursement

Future opportunities:

圓

- Regional lab consolidation
- Integration with existing WSI platforms
- Multi-site training datasets
- Workflow optimization focus

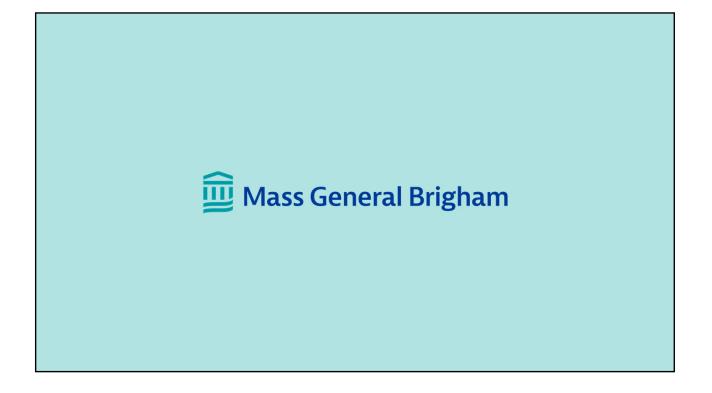

Practical AI evaluation framework

Domain	Key questions
Clinical value	Does it improve sensitivity, specificity, or turnaround time?
Regulatory status	Is it FDA-cleared, CE-marked, or purely research?
Scalability	Is it viable for your volume and specimen mix?
Workflow fit	Can it integrate into existing processes and AP-LIS?
Hardware burden	Does it require proprietary scanners, review stations, or IT infrastructure?
Standards compliance	Does it support or plan for DICOM compatibility?
Training burden	What's the learning curve and ongoing education requirements?
Support model	Will the vendor assist with training, QA, and downtime?
Vendor roadmap	Will they continue development and support long-term?

DICOM for pathology: learning from radiology's success

- **DICOM:** Digital Imaging and Communications in Medicine
- · Current cytology state: Most AI systems use proprietary formats, creating vendor lock-in
- DICOM advantages: Universal standard enables vendor-neutral image storage
- Interoperability benefits: Mix and match scanners, AI algorithms, and viewing software
- Hospital IT integration: Leverage existing imaging archives, and radiology infrastructure
- Future flexibility: Avoid vendor dependency

Action item: Ask vendors about DICOM roadmaps during evaluation


References

- Harinath L, Elishaev E, Ye Y, Matsko J, Colaizzi A, Wharton S, Bhargava R, Hanna M, Harrington S, Pantanowitz L, Zhao C. Diagnostic performance of the hologic genius digital diagnostics system for low-grade squamous intraepithelial lesion (LSIL) ThinPrep papanicolaou tests. J Am Soc Cytopathol. 2025 May-Jun;14(3):199-207. doi: 10.1016/j.jasc.2025.01.003. Epub 2025 Jan 17. PMID: 39947984.
- Genius Digital Diagnostics System. Instructions for use. Hologic Inc. Available at: https://www.hologic.com/sites/default/files/2024-02/MAN-10430-001_002_02.pdf. Accessed April 11, 2025.
- Harinath L, Elishaev E, Ve Y, Matsko J, Colaizzi A, Wharton S, Bhargava R, Pantanowitz L, Zhao C. Analysis of the sensitivity of highgrade squamous intraepithelial lesion Pap diagnosis and interobserver variability with the Hologic Genius Digital Diagnostics System. Cancer Cytopathol. 2025 Jan;133(1):e22918. doi: 10.1002/cncy.22918. Epub 2024 Nov 5. PMID: 39498535; PMCID: PMC11695705.
- Cantley RL, Jing X, Smola B, Hao W, Harrington S, Pantanowitz L. Validation of Al-assisted ThinPrep® Pap test screening using the Genius™ Digital Diagnostics System. J Pathol Inform. 2024 Jul 2;15:100391. doi: 10.1016/j.jpi.2024.100391. PMID: 39114431; PMCID: PMC11304920.
- Kim D, Sundling KE, Virk R, Thrall MJ, Alperstein S, Bui MM, Chen-Yost H, Donnelly AD, Lin O, Liu X, Madrigal E, Michelow P, Schmitt FC, Vielh PR, Zakowski MF, Parwani AV, Jenkins E, Siddiqui MT, Pantanowitz L, Li Z. Digital cytology part 2: artificial intelligence in cytology: a concept paper with review and recommendations from the American Society of Cytopathology Digital Cytology Task Force. J Am Soc Cytopathol. 2024 Mar-Apr;13(2):97-110. doi: 10.1016/j.jasc.2023.11.005. Epub 2023 Dec 3. PMID: 38158317.
- Ikenberg H, Lieder S, Ahr A, Wilhelm M, Schön C, Xhaja A. Comparison of the Hologic Genius Digital Diagnostics System with the ThinPrep Imaging System-A retrospective assessment. Cancer Cytopathol. 2023 Jul;131(7):424-432. doi: 10.1002/cncy.22695. Epub 2023 Apr 17. PMID: 37068094.
- Cibas, E. S., & Ducatman, B. S. (2020). Cytology: Diagnostic principles and clinical correlates (5th ed.). Elsevier. Cibas, E. S., & Ducatman, B. S. (2020). Cytology: Diagnostic principles and clinical correlates (5th ed.). Elsevier.

Emilio Madrigal, DO | HMS CME: Advances in Cytology and Small Biopsies | June 2025

21

