

Case: Etiology of obstruction

- 35 yo male with a congenital solitary kidney
- Baseline Cr 1.2mg/dl
- Presents to ER in severe pain
- Ultrasound shows hydronephrosis
- Labs show a creatinine increase to 2.7mg/dl

*Based on his age alone, what is the most likely etiology of the obstruction?

- A. Kidney stone
- B. Prostatic obstruction
- C. Retroperitoneal neoplastic disease
- D. Anatomic abnormality

*Based on his age alone, what is the most likely etiology of the obstruction?

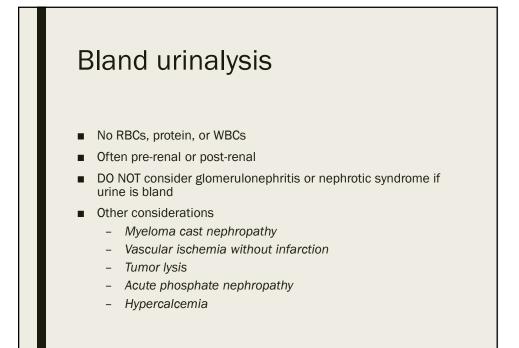
- A. Kidney stone
- B. Prostatic obstruction
- C. Retroperitoneal neoplastic disease
- D. Anatomic abnormality

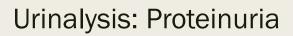
Most Common Causes of Obstruction by Age

- Children
 - Anatomic abnormalities
- Young Adults
 - Kidney stones
- Older Adults
 - Prostatic obstruction
 - Retroperitoneal or pelvic neoplasms
 - Kidney stones

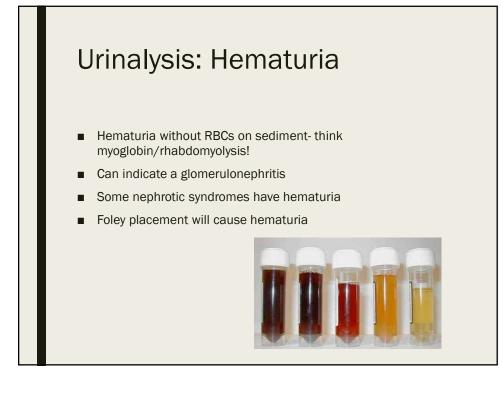
Case: The "Negative" Urinalysis

- 65 yo female presents to her PCP feeling "unwell" for 3 weeks with poor PO intake
- Labs checked and Cr 3.7
- She is referred to the ER and admitted for AKI, started on IV fluids
- Amongst other workup, a urinalysis is performed and the dipstick is reported as "negative" with no blood, protein, leukocytes, or nitrites


*Which of the following is NOT in your differential given this urinalysis?


- A. Myeloma cast nephropathy
- B. Dehydration due to poor PO intake
- C. Tumor lysis syndrome from a new lymphoma
- D. Rhabdomyolysis

*Which of the following is NOT in your differential given this urinalysis?


- A. Myeloma cast nephropathy
- B. Dehydration due to poor PO intake
- C. Tumor lysis syndrome from a new lymphoma
- D. Rhabdomyolysis

- "Proteinuria" on a dipstick is really albuminuria
- Proteinuria DOES NOT rule out myeloma/light chain disease
- Proteinuria on a dipstick is completely dependent on the urine concentration so need to quantify if positive
- Traditionally "microalbuminuria", or <300mg/g albumin, was below the level the dipstick could detect, but that is no longer the case with better dipsticks and also depends on concentration

Urinalysis: White Blood Cells

- AIN
- UTI/pyelonephritis
- Sterile pyuria
- Can be seen with GNs as well
- Can be seen with "dirty" urines, especially in women

Case: Use of the Protein:creatinine ratio

- 65 yo male with diabetes and microalbuminuria (last malb/cr 55mg/g) for foot amputation
- Develops AKI post-op, Cr from 0.9 to 3.3 over 3 days
- Pr/Cr checked as part of workup of AKI, ratio found to be ~4g
- 24h urine performed, found to have 1.2g/24 hours
- Why the discrepancy?

*Why the discrepancy?

- A. We are measuring different types of proteins in the two assay
- B. The ratio is inaccurate while serum creatinine is rising
- C. In diabetics we should be using malb/cr, not pr/cr
- D. 24 hour collection was undercollected

*Why the discrepancy?

- A. We are measuring different types of proteins in the two assay
- B. The ratio is inaccurate while serum creatinine is rising
- C. In diabetics we should be using malb/cr, not pr/cr
- D. 24 hour collection was undercollected

Protein:Creatinine Ratio in AKI

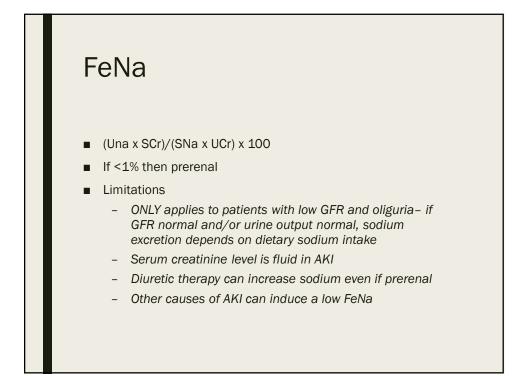
- Pr/Cr takes into account BOTH protein and creatinine
- AKI is NOT a steady state during the creatinine rise
- Thus, denominator of ratio is low and overestimates 24h excretion

Protein:Creatinine Ratio

- Works at the population level since the average daily creatinine excretion is 1g/day
- More limited at the patient level but good for tracking, although both Pr and Cr excretion variable during a day
- Very limited in AKI as creatinine excretion is not in a steady state

Case: Use of the fractional excretion of sodium (FeNa)

- 45 yo male alcoholic "found down"
- Appeared short of breath, got a PE protocol CT scan which was negative
- Admitted to hospital
- Baseline Cr 0.6
- Day 2 Cr 1.8
- Eating poorly but drinking water
- UOP 1200cc/day
- FeNa on Day 2 was 0.6%
- Aggressive fluids given for presumed prerenal azotemia
- Day 3 Cr 2.3, renal fellow looks at urine and sees muddy brown casts


*Which of the following is NOT a cause for the low FeNa?

- A. He is dehydrated as well
- B. Poor solute intake with good UOP decreases the sodium concentration
- C. Contrast causes afferent arteriolar vasoconstriction
- D. Serum creatinine level is fluid in AKI

*Which of the following is NOT a cause for the low FeNa?

A. He is dehydrated as well

- B. Poor solute intake with good UOP decreases the sodium concentration
- C. Contrast causes afferent arteriolar vasoconstriction
- D. Serum creatinine level is fluid in AKI

Other causes of AKI with low FeNa

- ATN with some underlying ischemia or poor perfusion such as sepsis
- Contrast nephropathy
- Myoglobinuria
- Any cause of AKI where tubular function is preserved despite decreased glomerular function

Fractional excretion of urea (FeUrea)

- (UUN x SCr)/(SUN x PCr) x 100
- If <35% suggestive of prerenal
- Less sensitive than FeNa in patients NOT on diuretics
- More sensitive than FeNa in patients on diuretics
- Similar limitations to the FeNa

- 23 yo female admitted for abdominal pain, thought to be irritable bowel syndrome in past
- Creatinine up from 0.7 baseline to 1.1 at admission
- Noted to have K 3.2 and bicarb 34
- Urine lytes show:
 - Urine sodium: 70mmol/L
 - Urine chloride: <assay
- After much questioning after seeing urine lytes, admits to surreptitious vomiting

*Why are the urine sodium and chloride values so disparate?

- A. She ingested sodium bicarbonate tabs
- B. She also surreptitiously took lasix, raising the urine sodium
- C. Sodium is being excreted with the excess bicarbonate
- D. She has Bartter's syndrome

*Why are the urine sodium and chloride values so disparate?

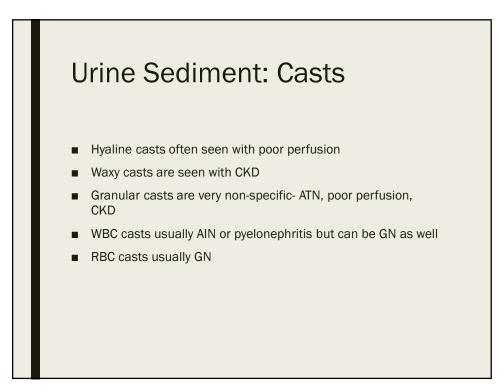
- A. She ingested sodium bicarbonate tabs
- B. She also surreptitiously took lasix, raising the urine sodium
- C. Sodium is being excreted with the excess bicarbonate
- D. She has Bartter's syndrome

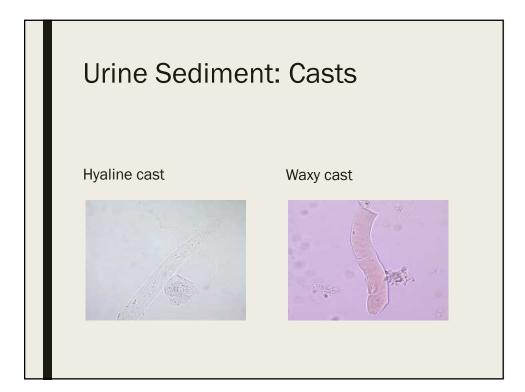
Urine Electrolytes: Sodium

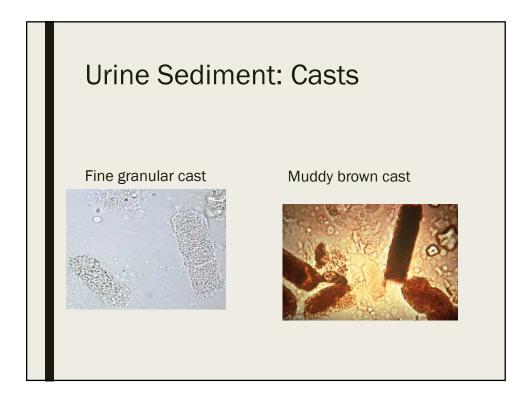
- Low urine sodium suggests a sodium-avid state
- Not considered as accurate as a FeNa as does not account for rate of water reabsorption and has same other limitations as the FeNa
- Lower limit of assay range differs at different hospitals!

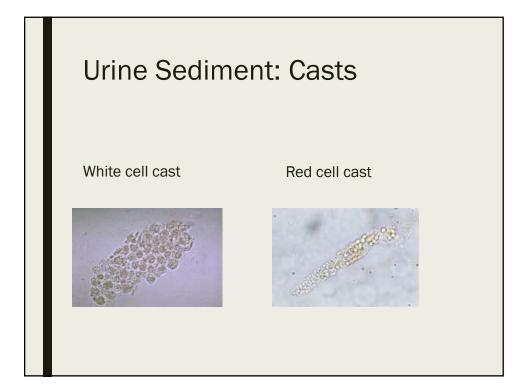
Urine Electrolytes: Chloride

- Reabsorbed with sodium, usually low when sodium is low
- Helpful in volume depletion with alkalosis
 - Bicarbonate is excreted as NaHCO3, thus urine sodium may not be less than assay
 - However, urine chloride will still be low indicating volume depletion
 - Usually the case if alkalosis is more severe than the volume depletion or else NaHCO3 will be reabsorbed proximally as well

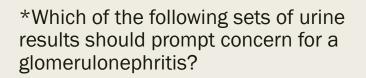

- 85 yo male with dementia and baseline Cr 0.8 is admitted with confusion and diarrhea
- Cr at admit is 2.4
- Given IV fluids and creatinine goes down to 0.8 over 3 days
- You look back at the urine microscopy report from the day of admission


*Which of the following is a likely finding?


- A. Muddy brown casts
- B. Hyaline casts
- C. Waxy casts
- D. RBC casts


*Which of the following is a likely finding?

- A. Muddy brown casts
- B. Hyaline casts
- C. Waxy casts
- D. RBC casts

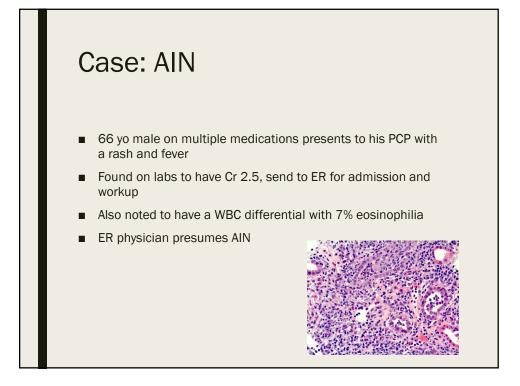


Case: Glomerulonephritis and the urinalysis

- 74 yo female with hx of GERD, recent history of sinusitis, is found to have Cr 1.7mg/dl and sent to the ER for workup
- In days prior to the presentation was also eating and drinking less due to feeling unwell
- BP 149/66, HR 91, O2 sat 96%
- Exam otherwise unremarkable, no edema
- Creatinine in ER 1.9mg/dl
- ANCA level done due to the sinus and pulmonary complaints, found to be positive

- A. Blood 2+, leukocyte esterase 2+, nitrite positive, protein 1+
- B. Blood negative, leukocyte esterase negative, protein 3+
- C. Blood 3+, leukocyte esterase trace, protein 3+, nitrite negative
- D. All negative results

*Which of the following sets of urine results should prompt concern for a glomerulonephritis?


- A. Blood 2+, leukocyte esterase 2+, nitrite positive, protein 1+
- B. Blood negative, leukocyte esterase negative, protein 3+
- C. Blood 3+, leukocyte esterase trace, protein 3+, nitrite negative
- D. All negative results

Urine findings in glomerulonephritis

- If don't see blood AND protein, VERY unlikely to be a glomerulonephritis
- Urine sediment sometimes reported as having RBC casts, but many times no RBC casts so does not rule out
- Can see leukocytes in a glomerulonephritis, does not rule out
- UTIs can have blood and protein but GNs should not have positive nitrites
- If AKI and urine sediment shows blood and protein, renal consult ASAP is necessary!

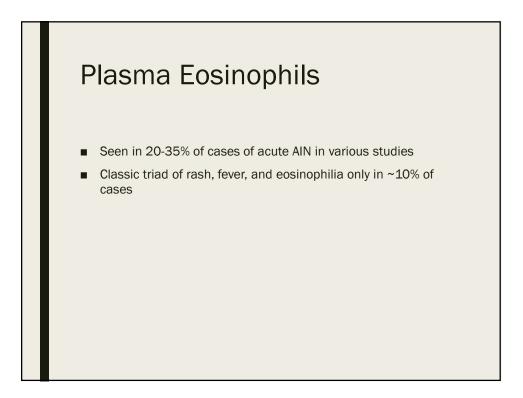
Symptoms that should prompt thinking of glomerulonephritis

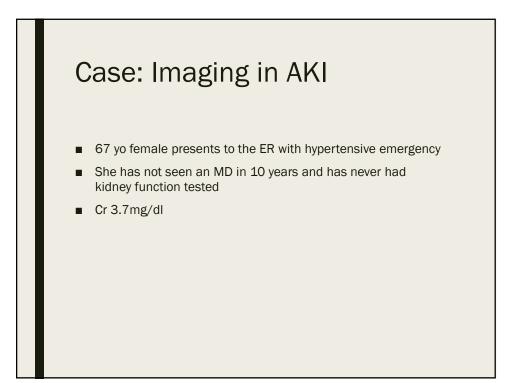
- Any pulmonary or sinus symptoms and/or hemoptysis consider ANCA disease and anti-glomerular basement membrane disease (i.e. Goodpasture's syndrome), IgA can present this way as well
- Other GNs can present with an array of symptoms, usually some overlap with rheumatologic symptoms and/or infections

*Which of the following would be the LEAST likely cause of this presentation?

- A. Ibuprofen
- B. Furosemide
- C. TMP/SMX
- D. Omeprazole

*Which of the following would be the LEAST likely cause of this presentation?


- A. Ibuprofen
- B. Furosemide
- C. TMP/SMX
- D. Omeprazole

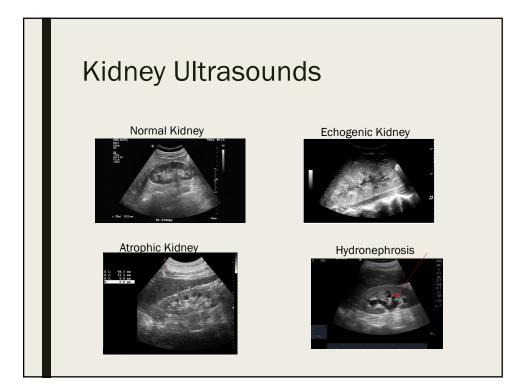

Proton Pump Inhibitors and AIN

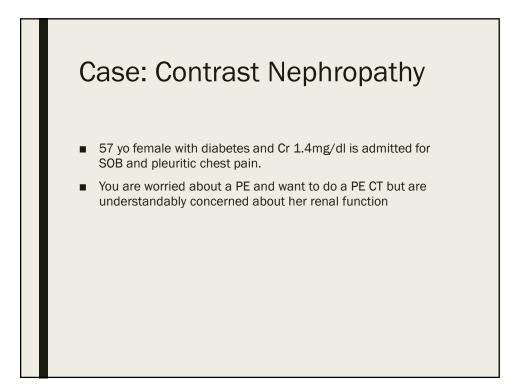
- Do NOT present as classical AIN
- Often late-onset after at least 4-6 months of the medication
- Rarely present with rash, fever, or eosinophilia
- May resolve with stopping the medication but will often require steroids
- Mechanism and why onset it so late are unclear

Urine Eosinophils

- Used to test for AIN but sensitivity and specificity are poor
- Sensitivity and specificity averages for ≥1% eosinophils on Hansel stain
 - Sensitivity- 63-91%
 - Specificity- 85-93%
- Other conditions with eosinophils
 - Transplant rejection
 - Pyelonephritis/cystitis/prostatitis
 - RPGN
 - Atheroembolic disease

*Which imaging modality can help you determine if this is acute or chronic?


- A. Nuclear scan
- B. Xray
- C. Renal ultrasound
- D. MRI


*Which imaging modality can help you determine if this is acute or chronic?

- A. Nuclear scan
- B. Xray
- C. Renal ultrasound
- D. MRI

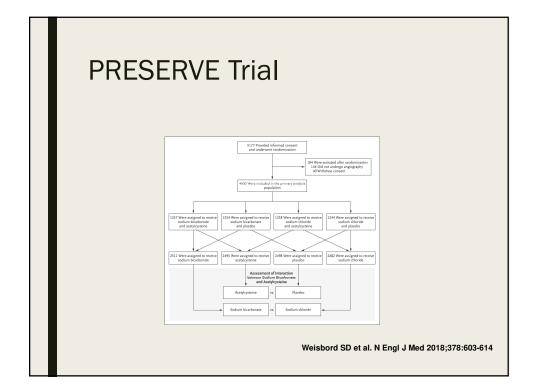
Renal Ultrasound in AKI

- Should order only if you think it will help with making a diagnosis
- R/o hydronephrosis
- Infiltrative disease if one or both kidneys are very large
- Cortical thinning and/or increased echogenicity
 - Suggest underlying chronic disease
- Disparate kidney sizes
 - Atrophic kidney
 - Unilateral RAS

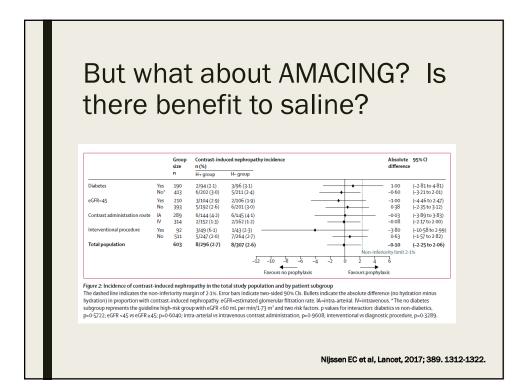
*Which of the following is currently recommended for renal prophylaxis?

- A. Isotonic Saline
- B. Isotonic Bicarbonate
- C. N-Acetylcysteine
- D. Saline with furosemide to prevent volume overload

*Which of the following is currently recommended for renal prophylaxis?


- A. Isotonic Saline
- B. Isotonic Bicarbonate
- C. N-Acetylcysteine
- D. Saline with furosemide to prevent volume overload

Contrast Nephropathy


- Higher risk: diabetes, myeloma, prior renal insufficiency, proteinuria
- Increase in Cr within 24-48 hours, peak 3-5 days, baseline in 6-10 days
- Usually non-oliguric
- Can see muddy brown casts
- FeNa often <1% with high specific gravity of urine

Prevention of contrast nephropathy

- This is highly debatable and many studies
- Isotonic saline may be better than 1/2NS
- Isotonic bicarb data is equivocal
- Saline WITH furosemide appears to cause a higher risk of CIN
- Data regarding N-acetylcysteine (NAC) equivocal despite many meta-analyses, most recent analyses appear to NOT show a benefit
- Currently the most consistent recommendation is to give saline if no contraindications given it is cheapest with the least side effects, some studies do show benefit

PRESE		_							
		Total No.	Sodium Bicarbonate vs. Sodium Chloride		ide	Acetylcysteine vs. Placebo			_
			Odds	Ratio (95% CI)	P Value	Odds Ratio (9	5% CIJ	P Value	
	Primary End Point All patients	4993					1.02 (0.78-1.33)		
	Estimated GFR		-	0.93 (0.72-1.23	0.79	-	1.02 (0.78-1.53)	0.79	
	<45 ml/min/1.73 m ³	2615		0.91 (0.65-1.26	}		0.98 (0.71-1.37)		
	45-60 ml/min/1.73 m ²	2377		0.98 (0.62-1.54	}		1.06 (0.67-1.67)		
	Diabetes Yes	4041		0.00 10 71 1 100	0.73		0.94 (0.70-1.27)	0.25	
	Yes	4041 949		0.96 (0.71-1.25 0.85 (0.48-1.55	2		0.94 (0.70-1.27) 1.38 (0.77-2.48)		
	Urine ACR				0.59			0.12	
	=30	1723		0.89 (0.51-1.5)	1		1.47 (0.83-2.62)		
	30-300	1637		1.10 (0.72-1.70	1		1.08 (0.70-1.66)		
	>300 Contrast volume	1155		0.79 (0.49-1.28	0.32		0.69 (0.42-1.12)	0.19	
	s125 ml	3525		0.87 (0.63-1.20	1		0.92 (0.67-1.26)	0.13	
	>125 ml	1403		1.01 (0.61-1.67)		1.19 (0.72-1.98)		
	Angiography Coronary	4466			0.02			0.29	
	Noncoronary	4400		0.83 (0.62-1.10 3.19 (1.03-9.94			1.00 (0.75-1.32) 0.91 (0.35-2.41)		
	Geographic region	47.1		3.19 (1.03-9.9	0.73		0.51 (0.35-2.41)	0.48	
	United States	4267		0.92 (0.69-1.22			1.06 (0.79-1.40)		
	Australia/New Zealand/ Malaysia	726		1.06 (0.49-2.25	1		0.79 (0.36-1.71)		
	Contrast-Associated Acute								
	Kidney Injury								
	All patients	4993	+	1.16 (0.96-1.41	}	+-	1.06 (0.87-1.28)		
	Estimated GFR <45 ml/min/1.73 m ²	201		1.28 (0.99-1.67	0.27		1.00 (0.77-1.30)	0.53	
	45-60 ml/min/1.73 m ²	2615 2377	-	1.03 (0.77-1.37	2		1.13 (0.85-1.51)		
	Diabetes				0.99			0.79	
	Yes	4041	֥	1.17 (0.94-1.44)		1.07 (0.87-1.32)		
	No Urine ACR	949		1.16 (0.71-1.93	0.40		1.00 (0.61-1.64)	0.53	
	<30	1723		1.39 (0.94-2.03			0.92 (0.63-).34)	9.33	
	30-300	1637	-	0.98 (0.71-1.36	}	֥	1.20 (0.87-1.66)		
	>300	1155		1.11 (0.77-1.60	1		1.00 (0.70-1.44)		
	Contrast volume s125 ml				0.39			0.25	
	s125 ml >125 ml	3525 1403		1.29 (1.01-1.65 0.97 (0.70-1.34		+	1.03 (0.81-1.32) 1.12 (0.81-1.54)		
	Angiography	1405		0.37 (0.70-1.34	0.81	-		0.18	
	Coronary	4466		1.14 (0.93-1.40		+-	1.09 (0.89-1.34)		
	Noncoronary	471		1.41 (0.75-2.65	}		0.85 (0.45-1.58)		
	Geographic region United States	1917		1.19 (0.97-1.4)	0.51	1	1.06 (0.86-1.30)	0.95	
	Australia/New Zealand/	4267		0.98 (0.57-1.68			1.06 (0.86-1.90) 1.07 (0.63-1.83)		
	Malaysia	720		0.70 (0.77 - 1.00	1	1			
		0.	25 0.50 1.00 2.00 4.00	8.00 16.00	0	25 0.50 1.00 2.00	4.00		
		-	·		-	cetylcysteine Better Placebo Better			
	Sodium Bica		arbonate Better Sodium Chloride Better						

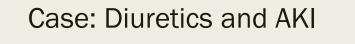
Why not follow AMACING and avoid prophylaxis?

- Randomized, controlled trial of "high risk" patients set up as non-inferiority trial of saline versus placebo
- However, group thought not to be high risk enough:
 - GFR 30-59ml/min/1.73m2 but only 35% were <45ml/min/1.73m2
 - 48% intraarterial contrast which is higher risk, only 6 in each group had AKI and none required dialysis
 - Only 2.7% overall had AKI which is lower than general risk in high risk group in most studies

Case: NSAIDs and AKI

- 47 yo female with DM 1 and albuminuria but normal creatinine
- Prescribed ibuprofen 600mg QID for a rotator cuff injury
- 2 weeks later notices significant leg swelling and goes to PCP
- Cr 5.4mg/dl and UA with 3+ protein

*Which of the following is NOT an affect of NSAIDs on the kidney?

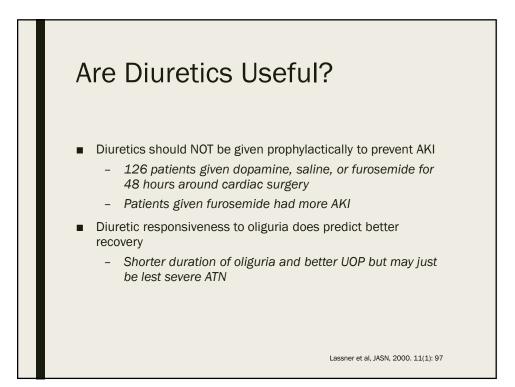

- A. Decrease in afferent vasodilation to decrease GFR
- B. Interstitial nephritis
- C.Minimal change disease
- D. Membranous nephropathy
- E. Focal and segmental glomerulosclerosis

*Which of the following is NOT an affect of NSAIDs on the kidney?

- A. Decrease in afferent vasodilation to decrease GFR
- B. Interstitial nephritis
- C.Minimal change disease
- D. Membranous nephropathy
- E. Focal and segmental glomerulosclerosis

NSAIDs

- Inhibits prostaglandin-mediated afferent vasodilation
- Causes an ischemic state by itself, or decreases threshold to other injury
- Other causes of AKI with NSAIDs:
 - Acute interstitial nephritis
 - Minimal change disease
 - Membranous nephropathy


- 82 yo male admitted with baseline Cr 1.3mg/dl admitted with SOB
- PE CT done and shows PE
- 2 days later creatinine starts to trend upwards but UOP is still good
- You follow him and 2 days after that creatinine is 4.5mg/dl and UOP is 10cc/h

*Which of the following is a true statement regarding diuretics and AKI?

- A. If he gets diuretics on day 4 and responds, this predicts better recovery
- B. He should not get diuretics on day 4 as this will further dehydrate the kidneys and do harm
- C. He should get diuretics on day 2 to prevent worsening AKI
- D. Diuretics should never be given in AKI

*Which of the following is a true statement regarding diuretics and AKI?

- A. If he gets diuretics on day 4 and responds, this predicts better recovery
- B. He should not get diuretics on day 4 as this will further dehydrate the kidneys and do harm
- C. He should get diuretics on day 2 to prevent worsening AKI
- D. Diuretics should never be given in AKI

