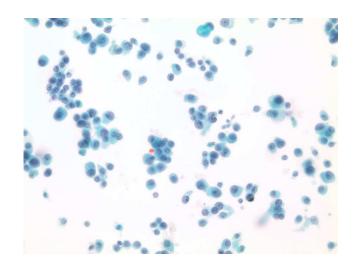

Pancreatic Non-Ductal Neoplasms

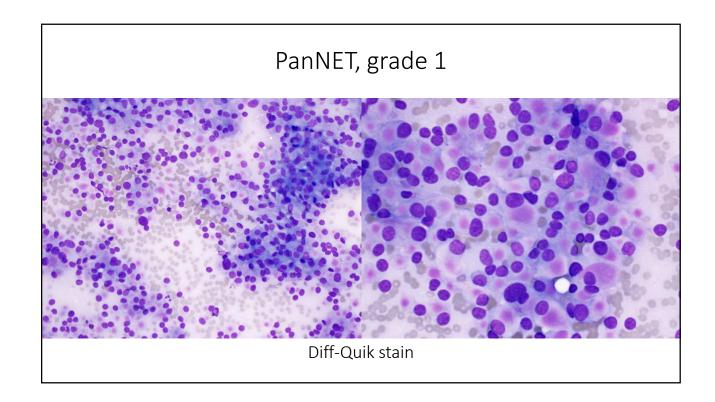
M. Lisa Zhang, MD

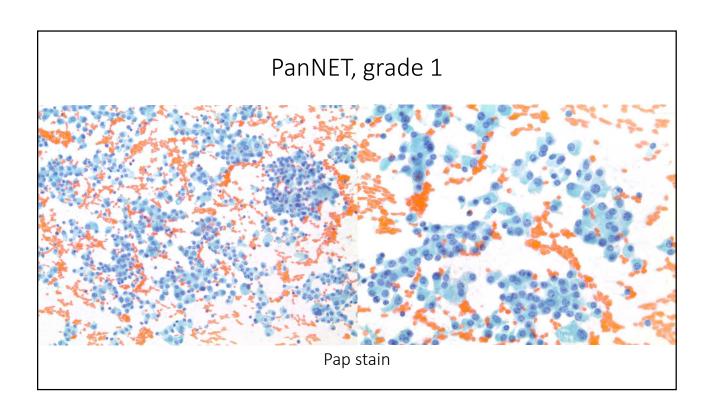
Massachusetts General Hospital

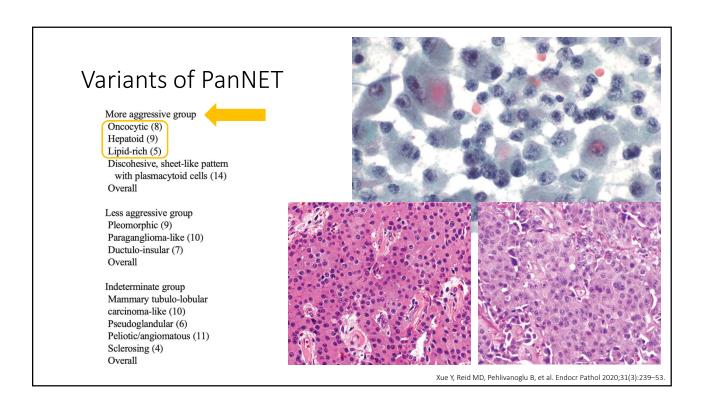
Harvard Medical School

Normal pancreas Acinar cells Ductal cells Neuroendocrine cells




Pancreatic neuroendocrine tumor (PanNET)


- 2-5% of all pancreatic neoplasms
- Presents at any age (highest incidence in ages 30-60), M=F
- 60% occur in pancreatic tail, but can arise anywhere within pancreas
- Non-functioning (>60%) and functioning types
- Generally slow-growing
- Surgery is the primary treatment
 - Conservative management in some cases (e.g. small tumors)


Pancreatic neuroendocrine tumor (PanNET)

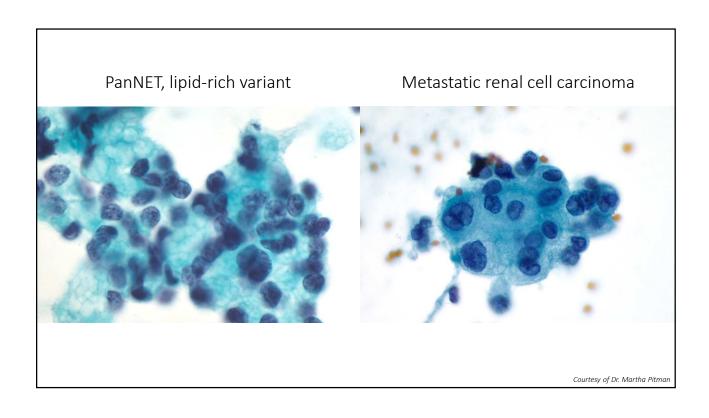
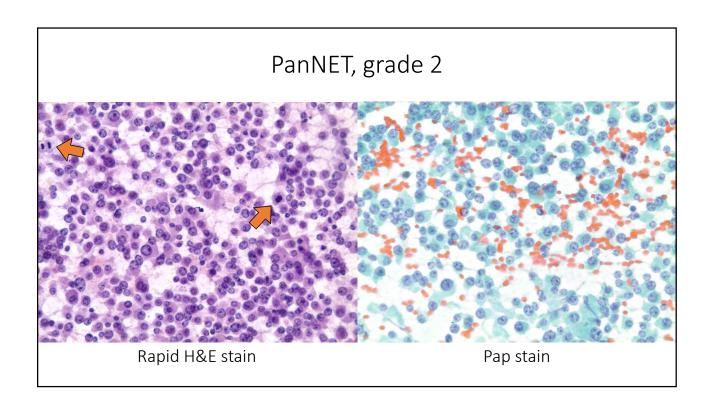
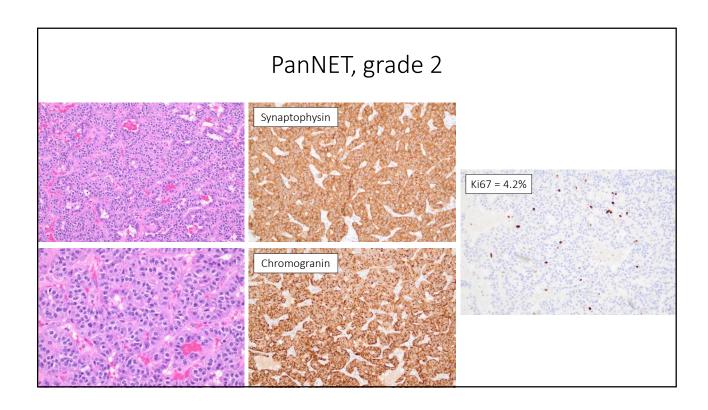

- Well-differentiated
- Architecture
 - Dispersed, loosely cohesive and single cells
- Cytomorphology
 - Monomorphic
 - Plasmacytoid
 - Round nuclei
 - "Salt-and-pepper" chromatin

Table 2 Comparison between more aggressive group and the cohort			
	More aggressive group	Overall cohort	p valu
Median size (cm)	5.0	2.5	< 0.00
Median Ki67 (%)	5.3	3.0	0.12
LN and distant metastatic rate at the surgery and during the follow-up (%)	96%	45%	< 0.00
Liv and distant metastatic rate at the surgery and during the follow-up (%)	100		
Table 4 Comparison between more and less aggressive groups			
	More aggressive	Less aggressive	p valı
		Less aggressive	
Table 4 Comparison between more and less aggressive groups	More aggressive		<i>p</i> valu < 0.00 0.001


Xue Y, Reid MD, Pehlivanoglu B, et al. Endocr Pathol 2020;31(3):239–53.


Grading PanNENs (WHO 5th Edition)

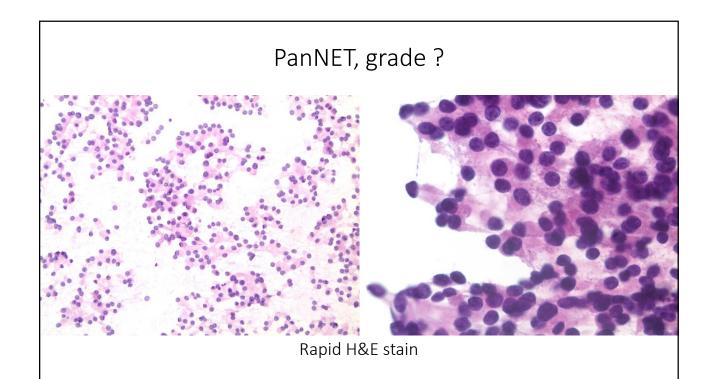
		Mitotic Count/2 mm ²	Ki-67 (%)
rade	Well-differentiated neuroendocrine tumors (NET)		
% ⊗	Grade 1	<2	<3
	Grade 2	2-20	3-20
<u>e</u>	Grade 3	>20	>20
-grac	Poorly differentiated neuroendocrine carcinomas (NEC)		
ig H	Small cell type	. 20	> 20
Ι [Large cell type	>20	>20

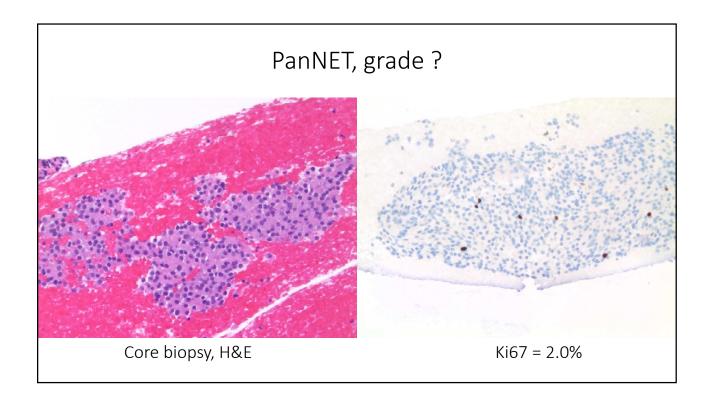
Grading PanNENs on resections

- CAP recommendations for resection specimens:
 - <u>Mitotic rate:</u> number of mitoses (at 40X magnification) per 2 mm², at least 10 mm² evaluated in the most mitotically active part of the tumor.
 - For microscope with field number (FN) = 22
 - Field diameter (mm) = FN/magnification = 22/40 = 0.55 mm
 - Field area (mm²) = πr^2 = 3.14*(0.55/2)² = 0.238 mm²
 - Recommended evaluation of 10 mm²/0.238 mm² = **42 HPF**
 - Minimum evaluation of 2 mm²/0.238 mm² = **8 HPF**

Grading PanNENs (WHO 5th Edition)

		Mitotic Count/2 mm ²	Ki-67 (%)
rade	Well-differentiated neuroendocrine tumors (NET)		
>	Grade 1	<2	<3
9	Grade 2	2-20	3-20
<u>a</u>	Grade 3	>20	>20
rac	Poorly differentiated		
₩ <u></u>	neuroendocrine carcinomas (NEC)		
igh	Small cell type	>20	>20
I	Large cell type	>20	>20

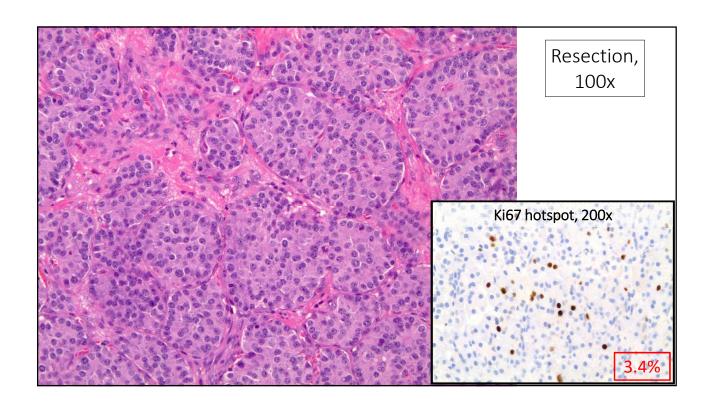

Grading PanNENs on resections


- CAP recommendations for resection specimens:
 - <u>Mitotic rate:</u> number of mitoses (at 40X magnification) per 2 mm², at least 10 mm² evaluated in the most mitotically active part of the tumor.
 - For microscope with field number (FN) = 22
 - Field diameter (mm) = FN/magnification = 22/40 = 0.55 mm
 - Field area (mm²) = πr^2 = 3.14*(0.55/2)² = 0.238 mm²
 - Recommended evaluation of 10 mm²/0.238 mm² = 42 HPF
 - Minimum evaluation of 2 mm²/0.238 mm² = 8 HPF
 - <u>Ki67 index:</u> minimum of 500 tumor cells be counted to determine the Ki67 index (some have recommended counting at least 2000 cells)

What about on cell blocks & small biopsies?

Grading PanNETs on Cell Blocks

- Jin et al. 2016 (58 cases), Abi-Raad et al. 2020 (49 cases):
 - EUS-FNA cell block (CB) and corresponding surgical pathology (SP)
 - All cell blocks had >100 tumor cells
 - Analysis only included grade 1 and 2 tumors
 - Compared with SP, CB manual count correctly graded 69% (k = 0.44) and 73% (hot spot method) in each study, respectively
 - Grade 1 tumors had much higher concordance than grade 2 tumors
 - Jin et al.: ~40% of grade 2 tumors under-graded on CB
 - Abi-Raad et al.: CB <1000 tumor cells → all grade 2 under-graded, CB ≥1000 tumor cells → grade 2 concordance rate increased to 64%
- Grading concordance improved as tumor cellularity increased
- A significant proportion of grade 2 PanNETs can be under-graded based on Ki67 index evaluated on a CB



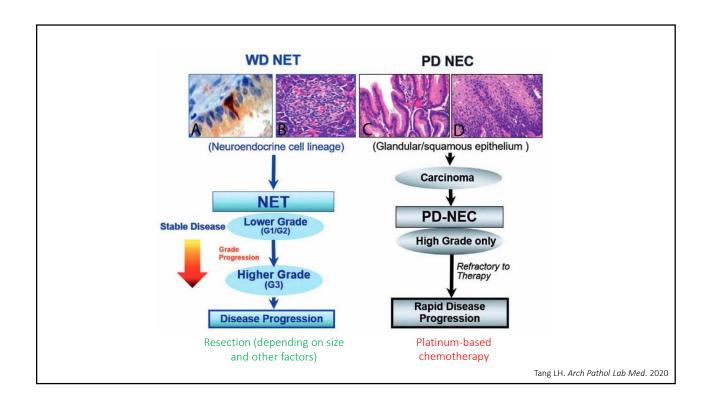
Example report

• Well-differentiated neuroendocrine tumor, provisional grade 1 (see note).

OR

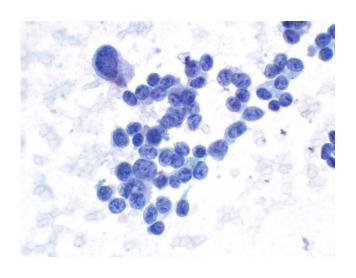
- Well-differentiated neuroendocrine tumor, low-grade (see note).
- Note: No mitoses are identified. A Ki67 proliferation index is 2.0%, though there are fewer than 500 tumor cells in the specimen (8 positive out of 398 tumor cells counted). Definitive grading is deferred to histologic assessment.

Grading PanNENs (WHO 5th Edition)

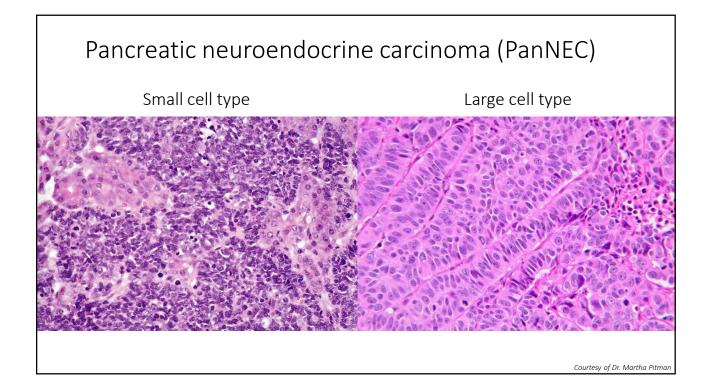

			Mitotic Count/2 mm ²		Ki-67 (%)		
	/ell-differenti euroendocrin	ated e tumors (NET)					
	Grade 1		<2	1		<3	
	Grade 2		2-20			3-20	3.4%
	Grade 3		>20			>20	
11211211	oorly differen euroendocrin	tiated e carcinomas (NEC)					
	Small cell type					>20	
	Large cell	type	>20				

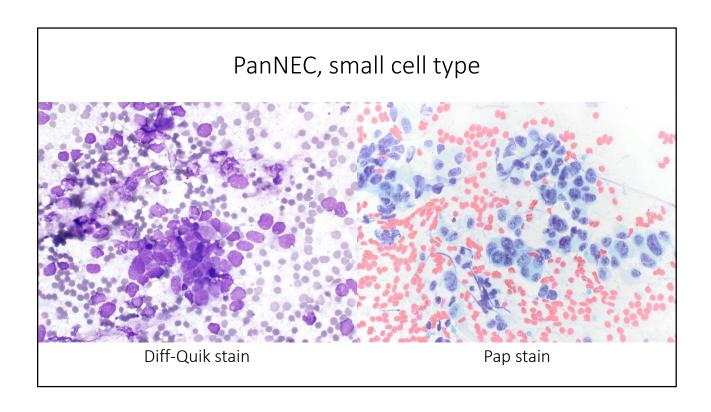
Grading PanNENs (WHO 5th Edition)

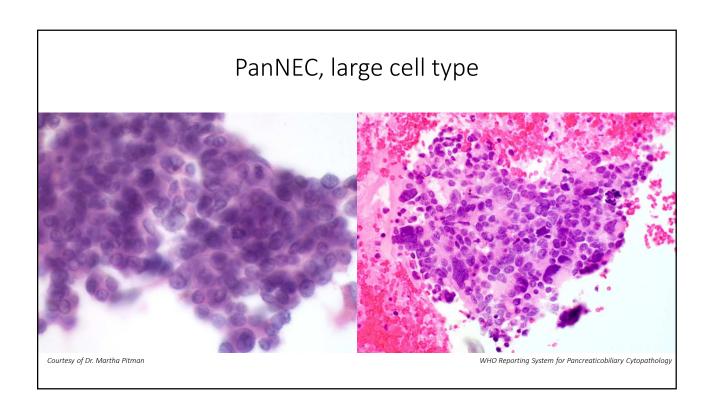
	Mitotic Count/2 mm ²	Ki-67 (%)	
Well-differentiated neuroendocrine tumors (NET)			
Grade 1	<2	<3	
Grade 2	2-20	3-20	
Grade 3	>20	>20	
Poorly differentiated neuroendocrine carcinomas (NEC)			
Small cell type	>20	. 20	
Large cell type	>20	>20	

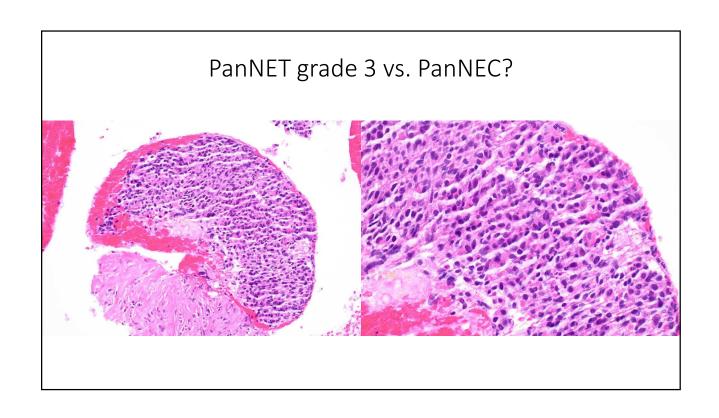

	WD-PanNET (G3)	PD-PanNEC
Clinical assessment		
Presentation	Either incidental findings or mildly symptomatic	High-grade malignancy-associated symptoms with rapid disease progression
Radiology	Diffuse avidity on SSRS	Negative or weak/focal activity on SSRS
	PET finding may be positive but heterogenous	PET finding positive with high SUV
Biomarkers	Elevated neuroendocrine markers (chromogranin-A)	Elevated carcinoma markers (CA 19.9)
Pathologic assessment	A spectrum of tumor grades: a component lower-grade tumor; or prior lower-grade tumor in another specimen	Homogenously high grade: no low-grade component; a component of ductal adenocarcinoma
Ancillary tests		
Immunohistochemistry	Loss of Daxx or Atrx expression	Loss to Rb, SMAD4, and/or abnormal p53 expression
	Expression of SSR ₂	Uncommon SSR ₂ expression
Gene mutations	DAXX/ATRX and/or MEN1, PI3K/mTOR (TSC1/2, PTEN) >40%	TP53, SMAD4, KRAS, RB1 in most

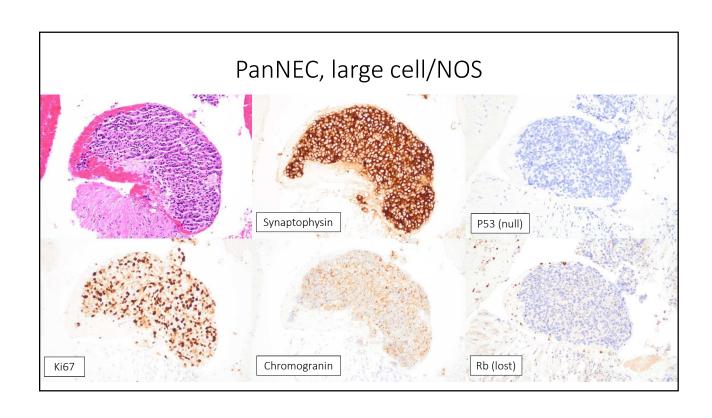
Tang LH. Arch Pathol Lab Med. 2020

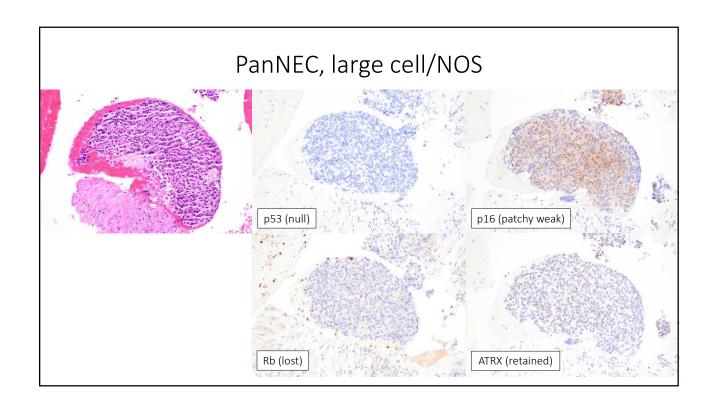

PanNET, grade 3

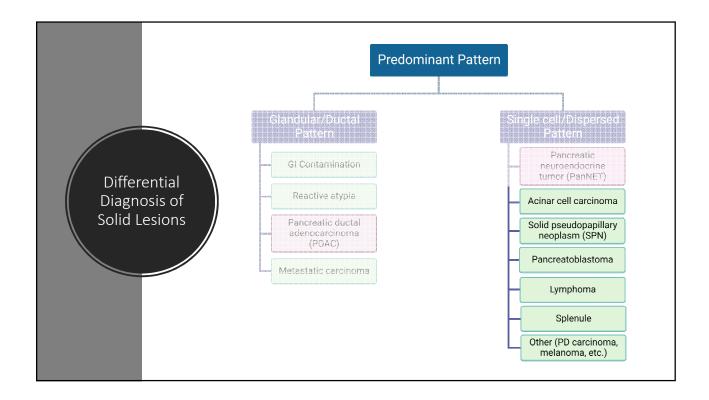

- Well-differentiated
 - Still looks neuroendocrine
- Cytomorphology
 - Increased pleomorphism
 - Increased N/C ratio
 - "Salt-and-pepper" chromatin
- Definitive grading should only be performed on adequate tissue (+/- ancillary studies)




Pancreatic neuroendocrine carcinoma (PanNEC)


- Poorly differentiated
- Architecture
 - Clusters, loosely cohesive and single cells
- Cytomorphology
 - High-grade, overtly malignant
 - Small cell type: high N/C ratio (scant cytoplasm), molding, necrosis
 - Large cell type: lower N/C ratio
 - "Intermediate/NOS type": somewhere in between

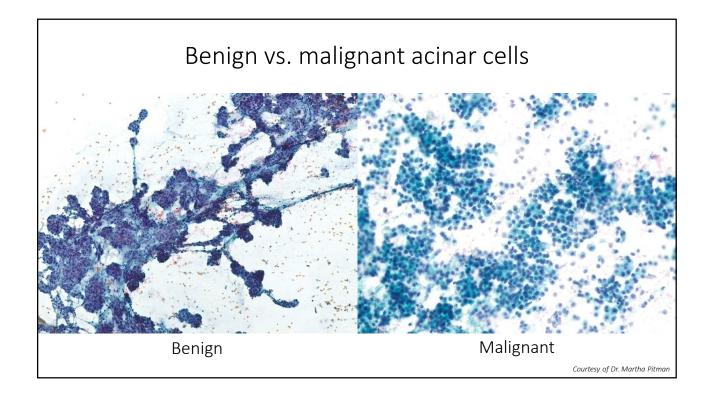


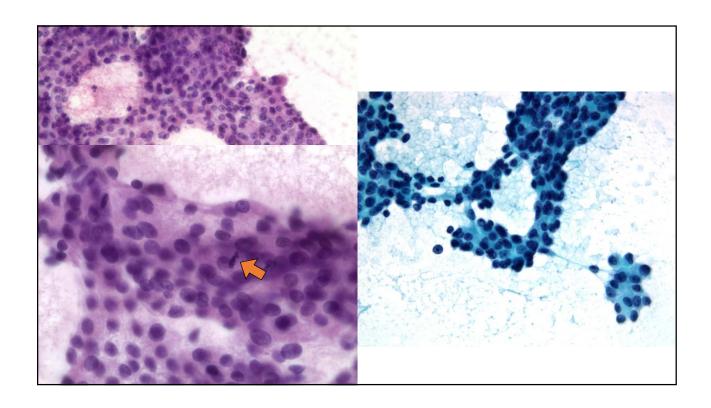

"Integrated diagnosis"

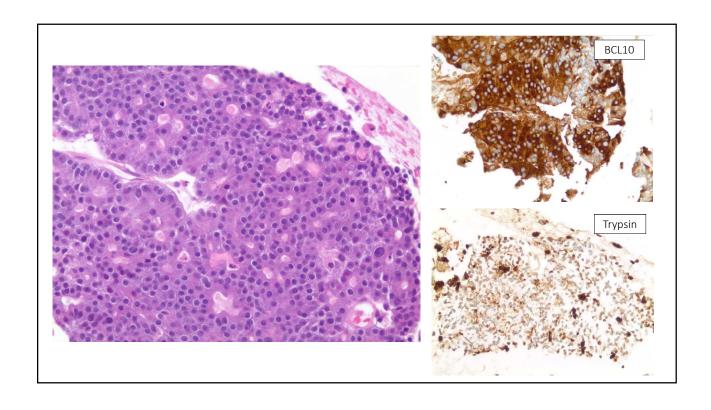
Molecular Alterations	G3 PanNET	PanNEC
TP53*	35%	88%
P53 IHC (mutant)	24%	71%
Rb	0%	47%
Rb IHC (loss)	0%	41%
CDKN2A (p16)*	41%	29%
P16 IHC (diffuse)	0%	65%
ATRX	24%	0%
ATRX IHC (loss)	18%	0%
DAXX	47%	0%
MEN1	71%	0%
SMAD4	6% (1 case)	41%

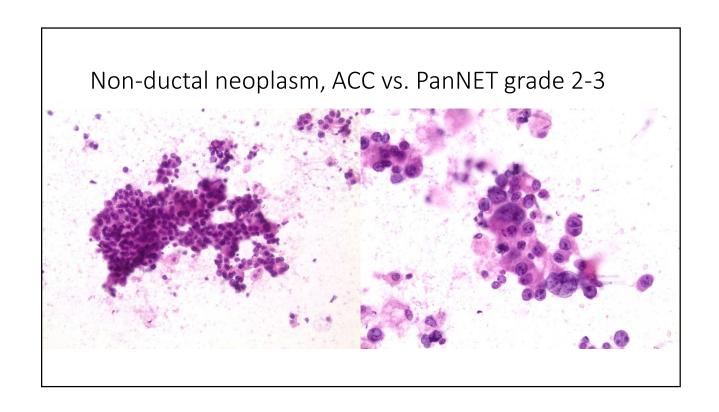
^{*}Mutually exclusive in G3 PanNET vs. co-altered in PanNEC (30%)

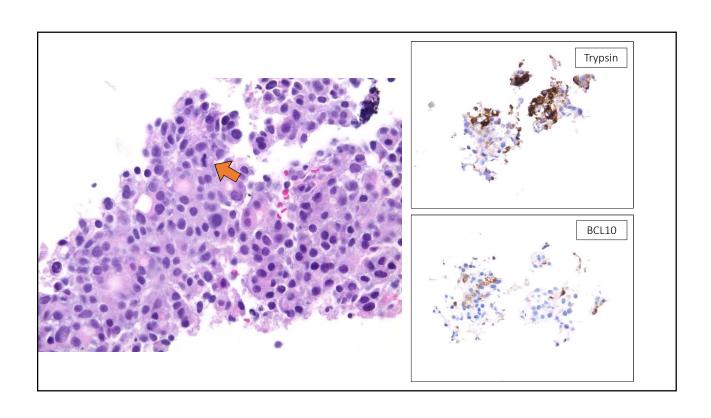
Umetsu SE et al. Mod Pathol. 2023.

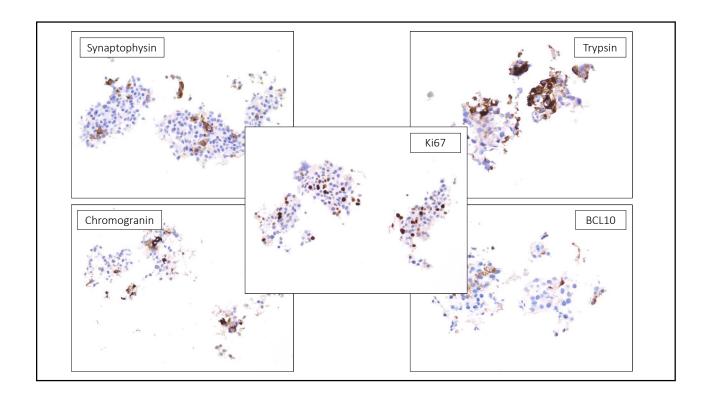


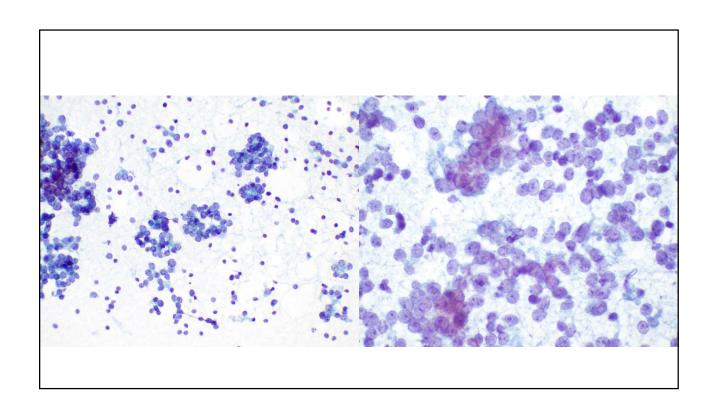

Acinar cell carcinoma (ACC)

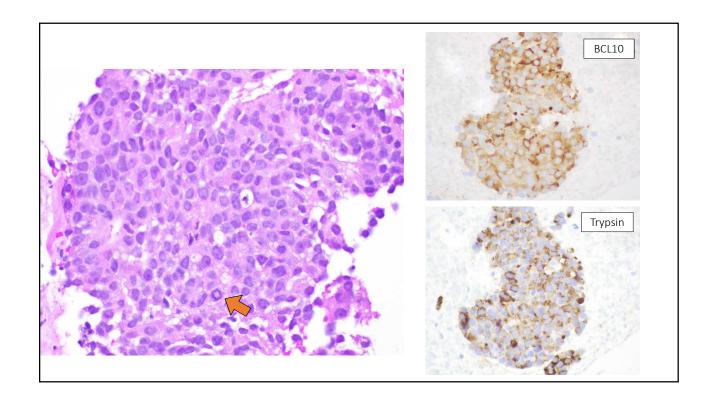

- 1-2% of adult pancreatic neoplasms, 15% of pediatric
- Mean age ~60 years, M>F 2:1
- Can occur anywhere within pancreas
- Usually large (mean 10cm)
- Highly aggressive neoplasm
 - 50% of patients have metastatic disease at presentation
 - 5-year survival ~6%

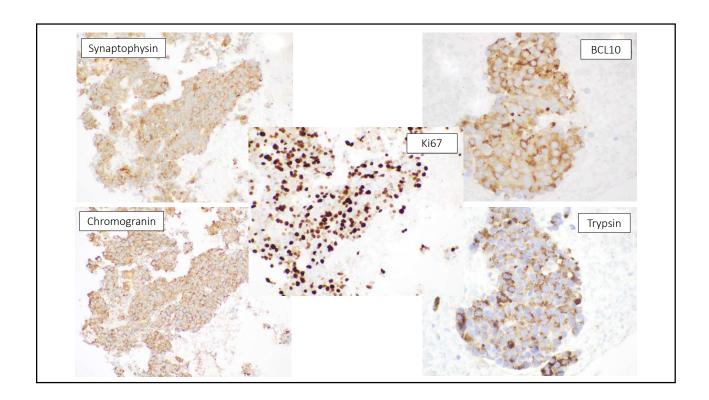

ACC Cytomorphology


- Dispersed single cells, clusters, trabeculae
- Background stripped naked nuclei
- Granular background
- Prominent central nucleoli
- Readily identified mitoses









Final diagnosis

- "Non-ductal neoplasm, favor acinar cell carcinoma."
- Morphology compatible/suggestive of ACC
- Mitoses and high Ki67 > 30% (based on very limited tissue)
 - ACC more common than grade 3 PanNET
- Patchy positivity for trypsin, BCL10, synaptophysin, and chromogranin
- Scant biopsy cellularity and equivocal IHC pattern precludes definitive diagnosis

Final diagnosis

- "Carcinoma with acinar and neuroendocrine differentiation."
- High-grade morphology
- Mitoses and very high Ki67 > 50%
- Diffuse positivity for trypsin, BCL10, synaptophysin, and chromogranin
- Can suggest diagnosis of "mixed acinar-neuroendocrine carcinoma" but definitive diagnosis requires examination of resection specimen

Mixed carcinomas of the pancreas

- Defined as having >30% of each line of differentiation
- Most common is mixed acinar-neuroendocrine carcinoma
 - 15-20% of all acinar cell carcinomas
 - Morphologically resemble pure acinar cell carcinomas
 - Co-expression of acinar and neuroendocrine markers (individual components usually **NOT** separate/morphologically distinguishable)
 - Treated as subtype of acinar cell carcinoma due to similar clinical behavior and genetics
- Other types of mixed tumors (mixed acinar-ductal carcinomas, mixed neuroendocrine-ductal carcinomas) more rare

Washington MK et al. "Pancreatic acinar cell carcinoma" In: Digestive System Tumours. 5th ed. IARC; 2019. WHO Classification of Tumours.

Acinar and neuroendocrine markers

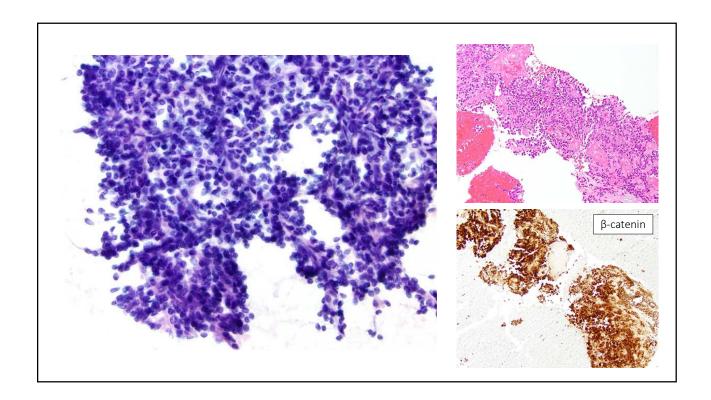
- Acinar markers: BCL10, trypsin, (chymotrypsin)
- Neuroendocrine markers: synaptophysin, chromogranin, INSM1, (CD56)
- 30-55% of ACCs have scattered synaptophysin/chromogranin+ neuroendocrine cells (<<30% of tumor cells)
- PanNETs commonly express acinar markers in <<30% of tumor cells

La Rosa et al. 2012	Acinar cell carcinoma	Mixed acinar-neuroendocrine carcinoma
Synaptophysin (>30% of cells)	0/49 (0%)	12/12 (100%)
Chromogranin (>30% of cells)	0/49 (0%)	12/12 (100%)
Trypsin	46/48 (96%)	11/12 (92%)
BCL10	40/47 (85%)	11/12 (92%)

Ohike N et al. Virchows Arch. 2004 La Rosa S et al. Am J Surg Pathol. 2012

Immunophenotyping results on both fine-needle aspiration cytology samples and paired histological specimens.

FNAC FNAB				FNAB				
Tumor types, case ID	BCL10 score (%)	Trypsin score (%)	Synaptophysin score (%)	Chromogranin score (%)	β-Catenin nuclear score (%)	BCL10 score (%)	Trypsin score (%)	Synaptophysin score (%)
ACC								
1	3+ (100)	1+ (50)	0 (-)	0 (-)	1+ (5)	3+ (100)	2+ (70)	0 (-)
2	3+(100)	2+ (70)	1+ (5)	0 (-)	0 (-)	3+(100)	3+ (80)	0 (-)
3	3+(100)	3+ (100)	0 (-)	0 (-)	n.a.	$3+(100)^{a}$	$3+(100)^a$	$(-)^a$
4	3+(100)	2+ (80)	1+ (10)	n.a.	n.a.	3+(100)	3+ (80)	0 (-)
5	3+(100)	2+ (60)	1+ (10)	0 (-)	n.a.	3+(100)	n.a.	1+ (5)
6	3+(100)	1+ (30)	1+ (20)	0 (-)	1+ (5)	3+(100)	2+ (50)	1+(10)
7	3+(100)	1+ (<5)	1+ (5)	0 (-)	0 (-)	3+(100)	1+(10)	0 (-)
8	3+(100)	2+ (60)	0 (-)	n.a.	0 (-)	3+(100)	2+ (80)	0 (-)
9	3+(100)	3+ (80)	0 (-)	0 (-)	n.a.	3+(100)	3+(100)	1+(10)
10	3+(100)	2+ (100)	0 (-)	0 (-)	1+ (5)	3+(100)	2+ (80)	0 (-)
11	3+(100)	2+ (100)	1+ (50)	0 (-)	0 (-)	3+(100)	3+(100)	0 (-)
12	3+(100)	3+ (70)	0 (-)	0 (-)	n.a.	3+(100)	n.a.	0 (-)
MANEC								
1	3+(100)	3+ (80)	2+ (70)	1+ (30)	n.a.	3+(100)	3+(100)	3+ (50)
2	3+(100)	3+ (100)	2+ (50)	3+ (60)	0 (-)	3+(100)	3+(100)	2+ (50)
3	3+(100)	3+ (80)	1+ (40)	1+ (10)	0 (-)	3+(100)	2+ (70)	1+ (50)
4	3+(100)	1+ (<5)	3+ (80)	2+ (60)	n.a.	3+(50)	n.a.	3+ (70)
5	3+(100)	2+ (60)	2+ (70)	2+ (60)	0 (-)	3+(100)	1+(20)	3+ (70)
6	3+(100)	2+ (70)	1+ (40)	0 (-)	0 (-)	3+ (70)	1+(50)	3+ (40)
7	3+(100)	3+ (60)	1+ (40)	1+ (30)	0 (-)	3+(80)	2+ (80)	1+ (50)
8	3+(100)	1+ (40)	2+ (60)	0 (-)	0 (-)	3+(100)	3+ (90)	2+ (60)
9	3+(100)	3+ (80)	1+ (40)	3+ (60)	0 (-)	3+ (80)	3+ (90)	1+ (50)

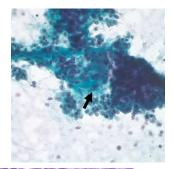

Manfrin E et al. Pathol Res Pract. 2021

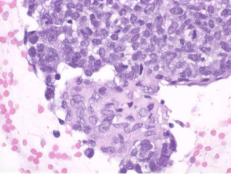
Solid pseudopapillary neoplasm (SPN)

- 2-5% of all pancreatic neoplasms
- ~90% female, mean age 28 years
- Can arise anywhere in pancreas, mean 10cm
- Large solid and cystic neoplasm, often radiologically diagnosed
- Low grade malignancy, usually indolent and completely cured with resection
 - 10-15% patients have metastatic disease at diagnosis limited to liver and peritoneum (still relatively good prognosis and die of other causes)

SPN Cytomorphology

- Dispersed cells
- Can have prominent, branching vessels
- Monomorphic nuclei, sometimes grooves
 - Falling off edge of vessels
- Eosinophilic or vacuolated cells, PASD+ hyaline globules, stromal hyalinization

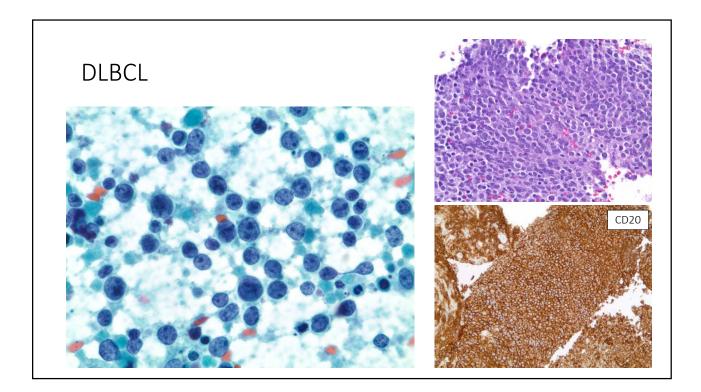



Pancreatoblastoma

- Two-thirds of cases present in children <10 years old (mean 4 years), but one-third presents in adults
- 25% of pediatric pancreatic neoplasms
- Arise equally in head/tail (large neoplasm, mean 10cm)
- Most sporadic; genetic syndromes (Beckwith-Wiedemann syndrome and familial adenomatous polyposis)
- Variable prognosis
 - Children: resectable tumors good prognosis, metastases bad prognosis
 - Adults: rapidly fatal like ACCs

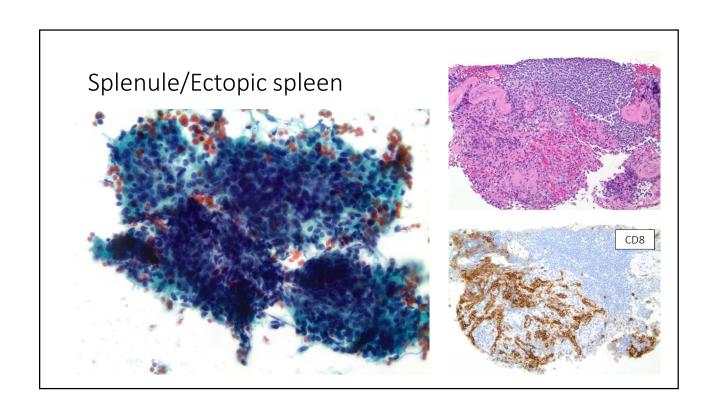
Pancreatoblastoma Cytomorphology

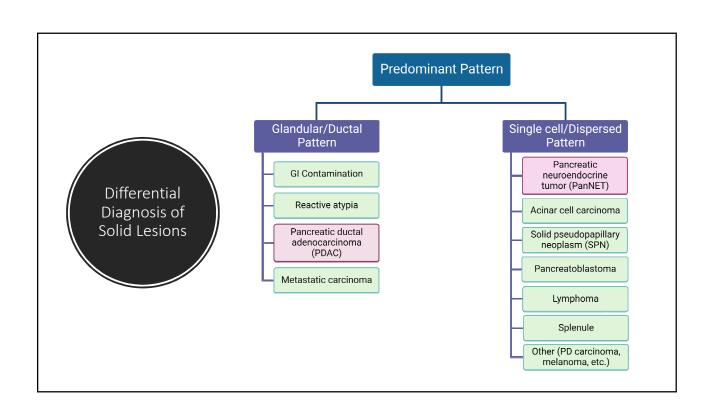
- Epithelial component
 - Syncytial groups and dispersed cells
 - Primitive monomorphic cells with a moderate to high N/C ratio
 - Squamoid corpuscles*
- Stromal component
 - Primitive spindle-shaped cells
 - Occasionally heterologous elements
- Trilineage but acinar component usually predominates
 - Looks like ACC on FNA


Courtesy of Dr. Martha Pitman

Immunohistochemical Profiles of the Solid-Cellular Pancreatic Tumors

Marker	Pancreatic neuroendocrine tumor	Acinar cell carcinoma	Solid pseudopapillary neoplasm	Pancreatoblastoma	
Pankeratin	+	+	-/focal	4	
Trypsin	Ō	+	-	+	
Chromogranin	/+\	/foral		+/-	
Synaptophysin	+	-/tocal	-/+	+/-	
INSM1 ^{nuclear}	\ + /	-	-	+/-	
CD56	+	-/focal	(†)	+/-	
β-Catenin ^{nuclear}	-	weak/focal	+	weak/focal	
BCL10		+	- Diagnostic Principles and Clinical Correl	+	


Lymphomas in the pancreas


- Mean age 55-65, M>F
- Primary pancreatic lymphoma accounts for <1% of pancreatic neoplasms
 - Primary clinical presentation within pancreas + bulk of disease located within pancreas
- Most are secondary non-Hodgkin B cell lymphomas → >2/3 are diffuse large B cell lymphoma (DLBCL)
- Most common in the pancreatic head, can be located throughout the pancreas and multiple in number

Splenule/Ectopic spleen

- Occurs in ~15% of general population
 - 80% splenic hilum, 20% pancreatic tail
- Includes *accessory spleen* (congenital) and *splenosis* (acquired auto-implants after abdominal trauma or splenectomy)
- Well-circumscribed vascular nodule in the pancreatic tail, mimics panNET by imaging
- Cytology:
 - Polymorphous lymphoid tissue, often in aggregates/clusters
 - Blood vessels
 - CD8+ highlights the splenic littoral cells lining the vascular spaces

Summary

- Remember that pancreatic ductal carcinoma is still by far the most common pancreatic neoplasm (>90%)
- Of the non-ductal neoplasms, pancreatic neuroendocrine tumor (PanNET) is most likely to be encountered
 - Be aware of morphologic variants
 - Be careful with tumor grading on small tissue samples
- Definitive diagnosis of non-ductal neoplasms can be difficult without cell block/core biopsy, which is often needed for ancillary studies
 - Be familiar with the IHC patterns that can be encountered

Thank you!