

FPHM general principles

• Syndromic or non-syndromic

- Absence of extra-hematopoietic features doesn't exclude a diagnosis
 - Some diagnoses are characteristically non-syndromic
- Classically syndromic causes are sometimes clinically non-syndromic
- Often autosomal dominant with incomplete penetrance/expressivity
 - Occult familial disease, e.g., parent with macrocytosis without anemia
 - Absence of a family history doesn't exclude the diagnosis
 - Often de novo dominant mutations
 - Not strictly speaking "familial"
 - True of both syndromic and non-syndromic causes

· Association with other hematological disorders

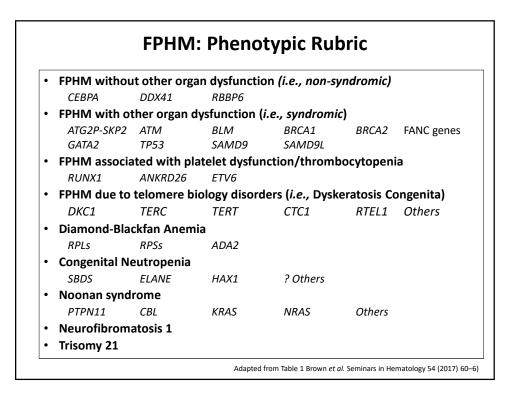
- Lymphoid malignancies (subset)
- "Aplastic anemia" (? Hypocellular MDS misdiagnosis)

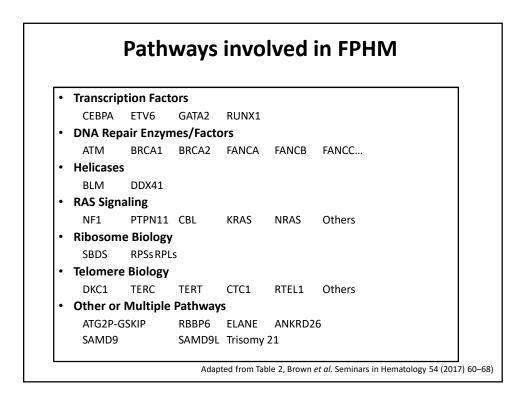
• Wide age range

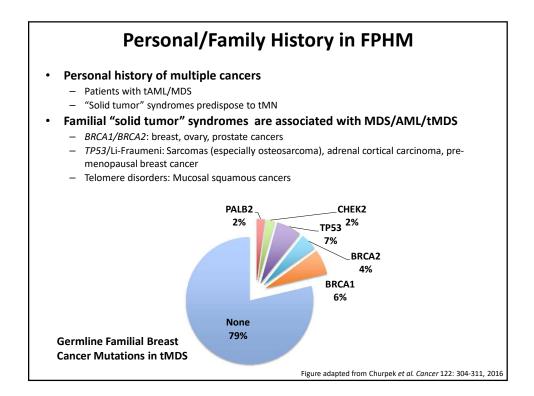
٠

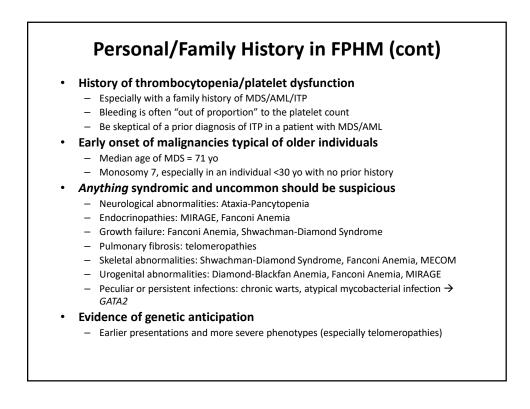
- "Congenital" diseases can present in late adulthood
- Infants to older adults
- Younger patients are more often syndromic
- ...But MDS/AML may be the presenting feature of a young adult with a "classic" bone marrow failure syndrome (*e.g.*, Shwachman-Diamond Syndrome)

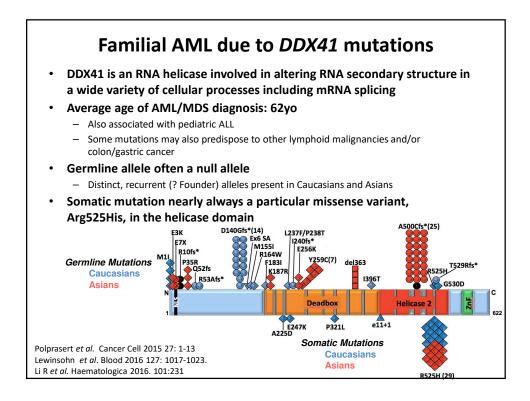
Fa	miliarity with the diagnoses/syndromes
-	"Chance favors the prepared mind.": Louis Pasteur
Fa	miliarity with the genes
-	Somatic mutations in some FPHM genes are common in sporadic hematological malignancies and are included on "somatic" next generation sequencing panels
-	Germline mutations are often discovered incidentally (e.g., RUNX1, CEBP, GATA2)
-	Many germline mutations are reported as variants of unknown significance (VUS) or "somatic" sequencing panels
	Analysis pipelines not specifically designed to evaluate germline variants
	 Evaluators are not necessarily aware of the syndromes or the patient's history
Ha	aving a high index of suspicion
-	Infant/toddler with AMKL $ ightarrow$ Down Syndrome or Trisomy 21 mosaicism
-	MDS/AML with monosomy 7 in a teenager $ ightarrow$ GATA2 deficiency
-	MDS with monosomy 7 in a toddler $ ightarrow$ SAMD9 or SAMD9L
-	JMML → Noonan Syndrome, NF1
-	tMDS \rightarrow hereditary cancer predisposition syndrome, <i>e.g.</i> , Li-Fraumeni
Ac	cess to CLIA sequencing with well curated genes/variants
Ac	cess to a multidisciplinary team
-	Genetic counseling
-	Other subspecialists, including pulmonologists, endocrinologists, gastroenterologists

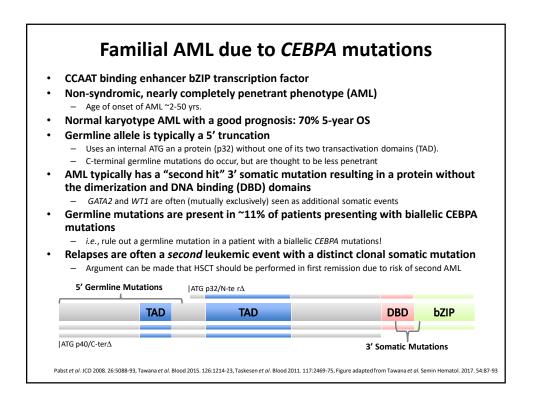

Why test for FPHM?

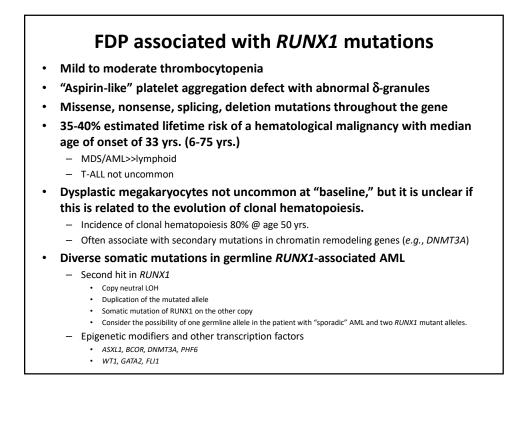

- Anticipate personal/familial risk
 - Heme malignancies
 - Other cancers
 - Non-malignant complications (e.g., pulmonary fibrosis)
- Individual surveillance for disease progression
 - Periodic CBCs/BMs well accepted
 - Certain cytogenetics associated with disease progression (e.g., +3 in FANC)
 - Role of surveillance for mutations "characteristic" of disease progression uncertain
 - e.g., TP53 mutations nearly universal in Shwachman-Diamond Syndrome AML
- Determine appropriate therapy
 - Avoid specific chemotherapies/XRT
 - Avoid inappropriate therapies
 - e.g., immune suppression in aplastic anemia vs. hypoplastic MDS
- HSCT donor selection
 - Age-dependence and variable penetrance makes clinical assessment unreliable
- · Increasingly recognized as the standard of care for new diagnoses
 - National Comprehensive Cancer Network (NCCN) MDS treatment guidelines
 - European LeukemiaNet AML treatment guideline
 - 2016 WHO Classification of Myeloid Malignancies

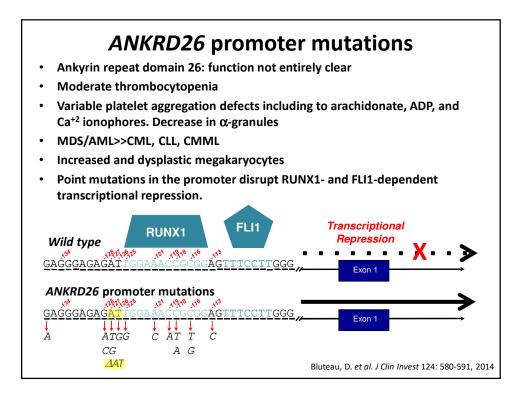

2016 WHO Classification of Myeloid Neoplasms with Germ Line Predisposition

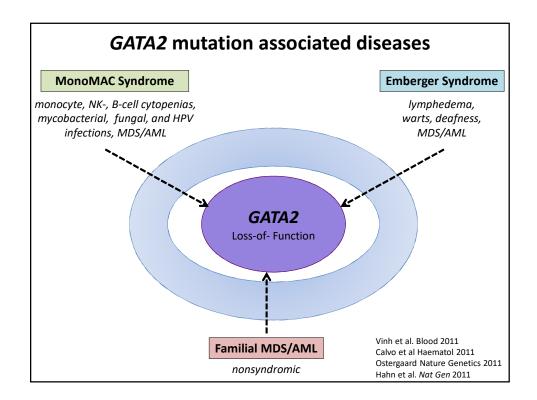

- Myeloid neoplasms with germ line predisposition without a preexisting disorder or organ dysfunction
 - AML with germ line CEBPA mutation
 - Myeloid neoplasms with germ line DDX41 mutation*
- Myeloid neoplasms with germ line predisposition and preexisting platelet disorders
 - Myeloid neoplasms with germ line RUNX1 mutation*
 - Myeloid neoplasms with germ line ANKRD26 mutation*
 - Myeloid neoplasms with germ line ETV6 mutation*
- Myeloid neoplasms with germ line predisposition and other organ dysfunction
 - Myeloid neoplasms with germ line GATA2 mutation
 - Myeloid neoplasms associated with BM failure syndromes
 - Myeloid neoplasms associated with telomere biology disorders
 - JMML associated with neurofibromatosis, Noonan syndrome or Noonan syndrome-like disorders
 - Myeloid neoplasms associated with Down syndrome*

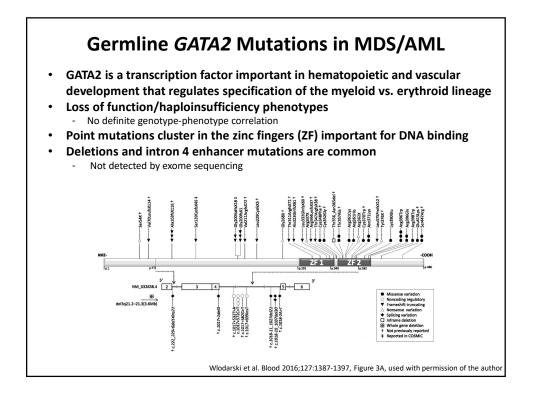

*Lymphoid neoplasms also reported Adapted from Table 17, Arber et al. Blood 2016 127:2391-2405

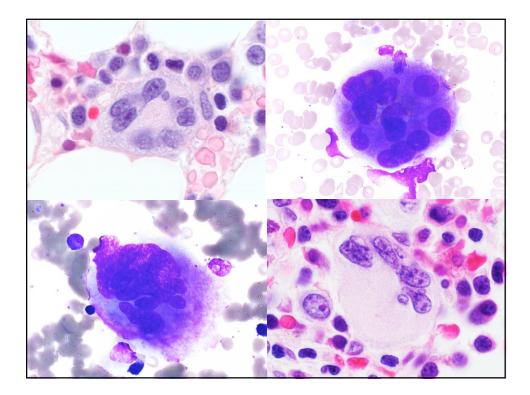


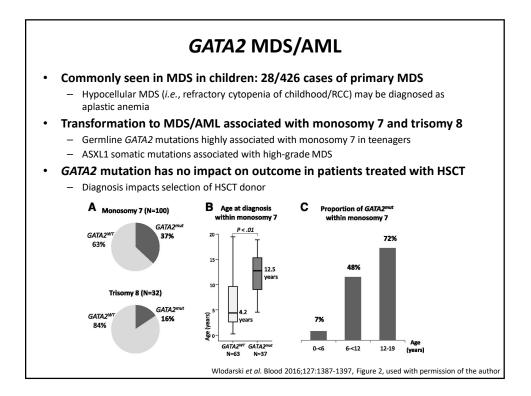


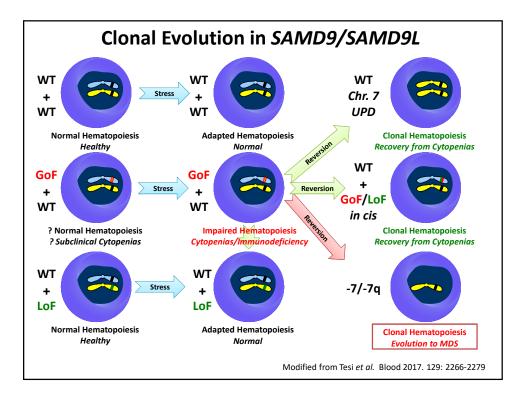


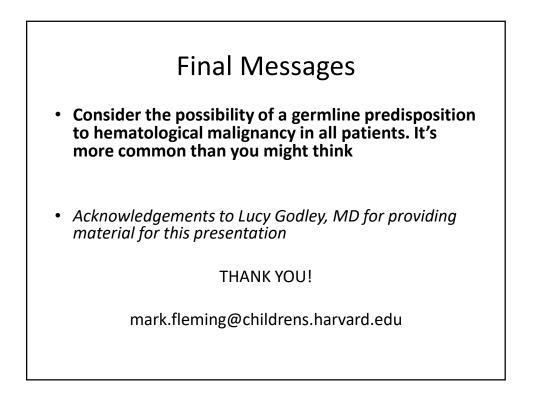

Familial Platelet Disorders (FDPs) with Predisposition to Hematological Malignancies


- Autosomal dominant disorders with variable penetrance


 RUNX1, ANKRD26, and ETV6 mutations
 - Generally <u>not</u> syndromic
 - *i.e., unlike* several other dominant familial thrombocytopenia, *e.g., MYH6* disorders, 11q23 deletions, etc...
 - Macrodeletions of the *RUNX1* gene and contiguous genes leads to a complex developmental disorder apparent in infancy
- Often mistaken for ITP
 - Platelet size is typically normal (not large)
 - Platelet count often not critically low, but patients experience bleeding episodes
 - Often have demonstrable platelet function defects
 PLT count may never be high enough to test, therefore missed.
- Associated with increased susceptibility to myeloid and lymphoid malignancies
 - Some families have few cases of malignancies: thrombocytopenia only
 - ETV6 mutations may also be associated with GI malignancies







SAMD9/SAMD9L			
•	<u>S</u> terile <u>A</u> lpha <u>M</u> otif <u>D</u> omain <u>9</u> and 9- <u>L</u> ike		
	 Located in tandem on chromosome 7q21 		
•	SAMD9: MIRAGE Syndrome		
	 <u>M</u>yelodysplasia 		
	– Infection		
	 <u>R</u>estriction of growth/IUGR 		
	 <u>A</u>drenal hypoplasia 		
	 <u>G</u>enital phenotypes 		
	 <u>E</u>nteropathy 		
	- Usually de novo dominant mutations: sometimes dominant with reduced penetrance		
•	SAMD9L: Ataxia-Pancytopenia Syndrome		
	– Cerebellar ataxia		
	– Pancytopenia/MDS		
	 Sometimes no neurological findings 		
	 Often clearly familial with dominant inheritance 		
•	SAMD9/SAMD9L gain of function (GoF) alleles		
•	Major contributors to MDS with monosomy 7 in early childhood		
•	Reversion mutations may lead to milder phenotypes or MDS with		
	monosomy 7		
	Narumi et al. Nature Genet 2016 48: 792-797, 2016, Chen. et al. Am J Hum Genet 2016 98:1146-11		

