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Acute Myeloid Leukemia (AML)

* Clonal proliferation of myeloid precursors with a reduced
capacity to differentiate into more mature cellular elements.

* accumulation of blasts in the bone marrow, peripheral blood, and
occasionally in other tissues

* reduction in the production of normal red blood cells, platelets, and mature
granulocytes

* Present with symptoms related to complications of
pancytopenia
* anemia, neutropenia, and thrombocytopenia
* Infections, general fatigue, pallor




Acute Myeloid Leukemia (AML)

* Clonal proliferation of myeloid precursors with a reduced
capacity to differentiate into more mature cellular elements.

* accumulation of blasts in the bone marrow, peripheral blood, and
occasionally in other tissues

* reduction in the production of normal red blood cells, platelets, and mature
granulocytes

* Present with symptoms related to complications of
pancytopenia
* anemia, neutropenia, and thrombocytopenia
* Infections, general fatigue, pallor

Morphology

* Morphology remains the key step to directing
other studies

* Assess blast cell percentage
* Manual count still required

* Flow cytometry blast counts may give erroneous results

* Immunohistochemical stains helpful in fibrotic samples

* Assess specific blast cell features
* Blast equivalents include abnormal promyelocytes and
immature monocytic cells (]monoblasts/promonocytes),
megakaryoblasts, erythroblasts
* Assess non-blast cell lines
* Presence of abnormal eosinophils, megakaryocytes, etc
* |dentification of increased basophils and eosinophils
* Detection of multilineage dysplasia




Cytogenetics in AML

* Diagnostic karyotype has been
found to predict response to
induction therapy, relapse risk and
overall survival

* biologically distinct subsets of disease

» Categorizes patients into
favorable, intermediate and
unfavorable risk groups

* Complex karyotype is defined as
more than 3 unrelated cytogenetic
abnormalities
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AML with recurrent genetic abnormalities

« AML with t(8;21)(q22;G22)(RUNX1-RUNX1T1)

* AML with inv(16)(p13.1922) or t(16;16)(p13.1;922)(CBFB-
MYH11)

« APL with t(15;17)g24.1;q21.1)(PML-RARA)

« AML with t(6;9(p23;934)(DEK-NUP214)

« AML with inv(3)(g21926.2) or t(3;3)(p13;q13)(RBM15-MKL1)
* AML (megakaryoblastic) with t(1;22)(p13;913)(RBM15-MKL1)

* Provisional entity: AML with mutated NPM 1
* Provisional entity: AML with mutated CEBPA

Molecular classes and recurrent gene mutations in AML
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No. of Unique Patients with Driver Mutation

Landscape of Driver Mutations in AML
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Genomic Classification in AML
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LeukemiaNet Prognostic Genetic Categories
| GeneticGroup _|Subsets

Favorable

Intermediate-|

*1(8;21)(922;922); RUNX1-RUNX1T1
+inv(16)(p13.1922) or t(16;16)(p13.1;922); CBFB-
MYH11

*Mutated NPM1 without FLT3-ITD (normal karyotype)
*Mutated CEBPA (normal karyotype)

*Mutated NPM1 and FLT3-ITD (normal karyotype)
*Wild-type NPM1 and FLT3-ITD (normal karyotype)
*Wild-type NPM1 without FLT3-ITD (normal karyotype)

Intermediate-I -1(9;11)(p22;923); MLLT3-MLL

Adverse

*Cytogenetic abnormalities not classified as favorable or
adverse

-inv(3)(g21926.2) or 1(3;3)(q21;026.2); RPN1-EVI1
-1(6:9)(p23;934); DEK-NUP214

*t(v;11)(v;023); MLL rearranged

=5 or del(5q); —=7; abnl(17p); complex karyotype

2017 ELN risk stratification by genetics

Risk category”

Genetic abnormality

Favorable

Intermediate

Adverse

1(8;21)(q22;922.1); RUNX1-RUNX1T1

inv(16)(p13.1922) or t(16;16)(p13.1;q22); CBFB-MYH11

Mutated NPM1 without FLT3-ITD or with FLT3-ITD'*"t

Biallelic mutated CEBPA

Mutated NPM1 and FLT3-ITDMeht

Wild-type NPM1 without FLT3-ITD or with FLT3-ITD"%! (without adverse-risk genetic

lesions)

1(9;11)(p21.3;q23.3); MLLT3-KMT2A*

Cytogenetic abnormalities not classified as favorable or adverse
t(6;9)(p23;q34.1); DEK-NUP214

t(v;11923.3); KMT2A rearranged

t(9;22)(q34.1;q11.2); BCR-ABL1

inv(3)(q21.3926.2) or t(3;3)(q21.3;926.2); GATA2, MECOM(EVI1)

Blood (2017) 129 (4): 424-447




Acute Promyelocytic Leukemia

Diagnostic emergency
0

* 5-8% of all AML cases
* Hypergranular APL — 60-70% presents with
low white blood cell count
* Hypogranular variant presents with
leukocytosis

* Rare cases do not resemble either
hypergranular or microgranular APL

* Minority of cases cryptic (negative) by
cytogenetics and FISH, but PCR positive

* Early ATRA essential to reduce risk of
hemorrhage

Translocations in Acute Promyelocytic Leukemia

Response to All-frans

Cytogenetics Fusion Proteins Frequency Retinoic Acid Prognosis Unique Features
t(15;17)(q22;G21) PML/RARA 98% Responsive Favorable None
t11;17)(923;21) ZBTB16/RARA 0.8% Resistant Worse prognosis Regular nucleus, fine

or absent granules,
increased CD56

expression
t(5;17)(q35;921) NPM/RARA Rare Responsive, but higher Favorable, but higher Pediatric patients
risk of relapse risk of relapse
t(11;17)(q13;921) NUMA/RARA Rare Responsive Favorable None
der(17) STAT5B/RARA Rare Resistant Worse prognosis None
der(17) PRKARTa/RARA Rare Responsive Favorable None
X;17)(p11;q12) BCOR/RARA Rare Responsive Favorable None
t4;17)(q12;921) FIPTL1/RARA Rare Responsive Favorable None

majority are similar morphologically to classic APL
- except ZBTB16-RARA t(11;17) APL, which has distinct cytologic features
- hypogranular pelgeroid neutrophils

Arch Pathol Lab Med 2015 Oct;139(10):1308-13




CEBPA mutations in AML: site matters

Taube et al: 4708 patients with AML fragment
analysis/targeted sequencing
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AML with NPM1 mutations

* One of the most common mutations in
normal karyotype AML

* Multilineage dysplasia in this setting has
been shown to not have clinical significance

* Presence of NPM1 mutation trumps multilineage
dysplasia

* Secondary AML cases (arising from MDS,
MPN, therapy related) lack favorable
prognosis of de novo AML

Diaz-Beya M et al Blood 2010;116: 6147-8
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High NPM1 mutant allele burden at diagnosis
predicts unfavorable outcomes in de novo AML
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Correlations between molecular MRD at CR1 and diagnostic NPM1 VAF and mutant NPM1
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NPMI- MN NPMI1+ MN NPM1+ AML
(n=95) (n=45) (n=119)

C h a ra cte rist i cs of Patient Characteristics

Median of age (range). years 68 (38-84)* 63 (36-96) 61 (15-85)

NPM1-mutated “non- ™ Y

Clinical Parameters

A M L” cases Hemoglobin (2/dL), median (range) 9.7 (4.8-159) 9.0 (6.1-12.7) 9.0 (5.7-15)
WBC (K/uL). median (range) 35 (0.6-69.4) 33 (1.2-225) 21 (0.69-340)*
Platelet count (K/uL). median (range) 84 (15-808) 79 (15-607) 72 (10-356)
Median of BM cellularity. % (range) 70 (10-95) 80 (10-100) 90 (30-98)*
.. . . Median of BM Blasts, % (range) 8(1-18) 10(1-19) 73 (21-96)*
* Multi-institutional study
. Diagnosis
Of 45 Cases Wlth <20% MDS non-EB, 1 (%) 50 24 n'a
MDS-EB. n (%) 55 (58) 24(53) na
bIaStS, but NPM1 CMML. n (%) 16(17) 9 (20) n'a
. MDS/MPN (non-CMML). nn (%) 8(8) 5(11) na
mutation £MN. n.(%) 11(12) s(11) a
AML._ n (%) n'a n'a 119 (100)

* Assessed clinical features,

IPSS-R scores (MDS cases only),

1 1 . 5.0(1.0-10.0) 5.0(1.5-7.0) n/a
co-mutations, and patient  medim ange .
outcome Outcome
Median Follow-up Time. months (range) 19.4 (0.3-57) 10 (0:07-70) 24 (0.13-125)
Alive at last follow-up, n (%) 53 (56) 29 (64) 67 (56)
Progression to AML. n (%) 30(32) 20 (44) n'a
Median tune to progression, months (range) 6.3(1.7-43) 52(04-17.5) na
Received up-front HMA therapy, n (%0) 55(58) 33 (73) 5(4)
ﬁ;c)ei\‘ed up-front induction chemotherapy, n 0(0) (7 113 (95)
Patel S Blood Advances 2019;3:1540 Received SCT at any time, n (%) 44 (46) 19 (42) 67 (56)

NPM1 mutation in myeloid neoplasms with
<20% blasts is similar to NPM1+ AML
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% Overall Survival

* 3 patients treated with up-front

NPM1-mutated non-AML patients appear to do
poorly if treated as MDS

Outcome of NPM1-mutated non-AML patients
based on induction versus HMA (retrospective)
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* 5/5 untreated patients progressed

to AML in a median of 3 months

Most patients were classified as MDS with excess blasts (MDS-EB; 19/31, 61%),
3 (10%) being classified as MDS-EB-1 and 16 (52%) being classified MDS-EB-2

Montalban-Bravo G Blood Advances 2019;3:922, Patel S Blood Advances 2019;3:1540

AML with BCR-ABL1

* De no AML

* No evidence (before or after therapy) of chronic myeloid

leukemia
e <1% of all AMLs

o £ B -
* Most cases have p210 fusion, with b2a2 and b3a2 § w P e
fusions being next most common. N %‘.
* A minority of reported cases with p190 transcripts =

* Exclude cases that meet criteria for MPAL, therapy
related neoplasms or other AML cases with

recurrent genetic abnormalities

* Deletion of antigen receptors (IGH, TCR), IKZF1
and/or CDKN2A may support a diagnosis of de novo

disease

* Patients may benefit from targeted (TKI) therapy

Soupir CP, et al. Am J Clin Pathol 127:642, 2007
Konoplev S, et al. Leuk Lymphoma 54:138, 2013
Nacheva EP, et al. Br ] Haematol 161:541, 2013




AML with mutated RUNX1

Gene located at 21922

* Encodes the alpha subunit of the core binding factor

Presentin 12.5-13.2% of AML
* More frequent in older male patients
* Frequent prior history of MDS, or prior exposure to radiation
* Wide morphologic spectrum

Frequently associated KMT2A-PTD, IDH1, IDH2 or ASXL1
mutations
* Rare CEBPA or NPM1 mutations

Poor response to therapy with shortened survival

Germline mutations should be evaluated
Cases arising from MDS will still be called AML- MRC
Cases with prior therapy will still be therapy- related Tang et al. Blood 114:5352, 2009

AML Mendler et al. J Clin Oncol
30:3109, 2012

AML with Myelodysplasia related changes

* Detection of multilineage dysplasia
* Two non-blast cell lines must show dysplasia in at least 50% of cells

* MDS-related cytogenetic abnormalities or prior MDS/MPN

* Absence of the specific genetic abnormalities of AML with recurrent
genetic abnormalities

* Absence of prior history of therapy

* Cases with dysplasia and NPM1 or CEBPA mutations are classified as
AML with RGA

* Deletion 9q
association with t(8;21),
frequently occurs in AML with NPM1 and biallelic CEBPA mutations




Complex karyotype (23 abnormalities) AML with t(6:9)(p23;q34);

Unbalanced abnormalities DEK-NUP214
Loss of chromosome 7 or del(7q) Frequently associated with
del(Sq) or #(5q) erythroid hyperplasia and
B e L nonlin multilineage dyplasia
Loss of chromosome 13 or del(13q)
del(11q)
del(12p) or {(12p) Basophilia common
idic(X)(q13)

Balanced abnormalities ':‘“;I';W't;ll_m;(: )z(qz,l?l,g/\zlfg/ 7)1r
{(11;16)(q23.3:013.3) (3;3)(021;026.2); -
(3:21)(026.2,922.1) Thrombocytosis
1(1,3)(p36.3:921.2)
tE2:11](P21:f123-3) Multilineage dysplasia with atypical
(5:12)(q32:p13.2)

{57(032011.2) small megakaryocytes
1(5;17)(@32:p13.2)

(5:10)(q32:921)

(3:5)(q25.3:935.1)

Micromegakaryocytes and Hypogranulated myeloid cells
independently associated with shorter OS/EFS in multivariable

Figure 3A: Event-free survival according to micromegakaryocyte/hypogranulation status Figure 3B: Overall survival according to micromegakaryocyte/hypogranulation status
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Using mutations in defining AML ontogeny

A > Secondary AML B
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Secondary AML=AML arising from MDS or CMML .
R. Coleman Lindsley et al. Blood 2015;125:1367-1376
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TP53 mutation in AML

* 10-15% of AML cases overall

* Much higher prevalence in therapy-related AML
* Expansion of TP53-mutated clonal hematopoiesis fostered by effects of
chemotherapy on bone marrow microenvironment
* 50-80% of complex karyotype AML has TP53 mutation,
* ~90% of TP53-mutated AML has complex karyotype

* Typically losses of 5q, 7q, and or 17p, and monosomal karyotype
» TP53 mutation less frequent in complex karyotypes lacking 5q-/7q-/17p-

* Present at the time of initial diagnosis in most cases (85%) and stable
during disease evolution or followup

Hou H-A et al. Blood Cancer J 2015;5:e331, Mrozek K et al. Leukemia 2019;33:1620, Wong TN et al. Nature 2015;518:552, Papaemmanuil et al.,
NEJM 2016;374:2209

TP53 mutation confers very poor prognosis in AML

* Considered a high-risk mutation in ELN scheme, but TP53-mutated patients
do even worse than other high-risk patients
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Herold T et al. Leukemia 2020;34:3161.




Outcome studies in TP53-mutated AML

* Intensive therapy does not appear to improve outcome over lower-
intensity therapies, even in younger patients with high blast counts.

* TP53-mutated AML also associated with poor response to
decitabine/venetoclax (median OS of 5.2 months, compared to 19.4 m for
TP53wt AML) and CPX-351 (even compared to other ELN high-risk)

* Outcomes poor after SCT

* TP53 mutations developing secondarily at AML relapse (~15% of patients)
are also associated with short survival (median OS of 4.6 months)

* Co-mutations and mutant allele status (multi-hit versus single TP53
mutation) do not appear to influence prognosis

Alwash Y et al. Am J Hematol 2021 (Epub), Chiche E et al. Blood Adv 2021;5:176, Kim K et al. Cancer 2021 (Epub), Bewersdorf JP et al. Leuk Lymphom 2020;61:2180,
Middeke JM et al. BJH 2016;172:914-22, Valk et al, Unpublished data.

How to identify TP53 multi-hit?

* Multi-hit signifies loss of wild-type allele through
* Presence of >1 TP53 mutation (i.e. both alleles mutated) (24%)
* Presence of 1 mutation with deletion of second allele (usually identified by
karyotype)(22%)
* Presence of 1 mutation with copy-neutral LOH (21%)

* Requires copy-number analysis that is not performed in most standard clinical NGS panels, but can
be approximated by high TP53 VAF >60%)

IIllll e ﬁ;l% III L l lll l'l‘
illlllI'lI ' |I‘I I mllll HI

Bernard E et al. Nat Med 2020;26:1549




Do TP53-mutated AML and MDS represent a single
entity with shared biology and dismal prognosis?

299 complex karyotype AML and MDS cases (0-94% blasts) MDS and AML OS by TP53 status
MDS and AML OS by TP53 status
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Acute erythroid leukemia

* Proliferation of immature cells
committed exclusively to the erythroid
lineage

¢ > 80% of the bone marrow cells are
erythroid, with >30% proerythroblasts),

* Often occurs as progression from prior
MDS or therapy related disease
* Therapy related neoplasm

* Blasts express CD117, CD71, CD36,
CD235

* AML M6a (myeloid/erythroid) reclassified
based on total marrow blast count ->
MDS or AML




Genomic Subtyping of Acute Erythroleukemia

159 cases included 35 pediatric cases (020 years, 22%), 8 young adults (21-39 years, 5%), 32 adults (40-59 years, 20%), and 84 older adults (> 60 years, 53%)
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Therapy related myeloid neoplasms

* Patients who develop myeloid neoplasms
following cytotoxic therapy

» 70% treated for solid malignancy and 30% for
hematologic malignancy

¢ common occurs 5-10 years after exposure to alkylating
agents and/or ionizing radiation

» 1-5years follows treatment with agents that interact
with DNA topoisomerase |l (topoisomerase Il
inhibitors).

* AML and MDS grouped together

* May have recurring ((:jytogenetic abnormalities that
impact prognosis and should be noted in diagnosis

* May occur after therapy for another AML type




Genetics of t-AML

= de novo AML = sAML tAML
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Hematology Am Soc Hematol Educ Program 2016 Dec 2;2016(1):24-32.
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Pathogenesis of therapy-related AML
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Inherited cancer susceptibility

* German AML Study Group (AMLSG) published data on the latency from
diagnosis of the primary malignancy to t-AML.

* Seven percent of a cohort of 2835 patients with AML developed t-AML after
chemotherapy and/or radiotherapy for the primary malignancy, with a median
latency of ~4 years.

* Interestingly, 3% developed AML after a diagnosis of an independent
malignancy that had never been treated with chemotherapy or radiotherapy.

* Compared with t-AML patients, these patients more often had prostate cancer (23% vs
9%), bladder cancer (9% vs 1%), and renal cell carcinoma (9% vs 2%), but less often had
breast cancer (10% vs 52%).

* AML developed in these patients with no history of chemotherapy or radiotherapy, with a
median latency of 5 years, which is similar to that of patients with t-AML

Blood. 2011 Feb 17; 117(7):2137-45.

AML with RAM phenotype

* In 2016, Brodersen et al reported an immunophenotype that is
associated with poor prognosis in pediatric patients
* Assessed 821 new pediatric AML immunophenotypes
* Excluded Down syndrome and APML patients
* |dentified 19 patients with 4 unique immunophenotypic features
* Bright CD56 expression " > )
Dim-to-negative CD45 ‘ "
Dim-to-negative CD38 e
Absent HLA-DR B R T T
RAM patients had intermediate-risk cytogenetics and lacked
molecular risk features (FLT3-ITD, CEBPA or NPM1)

Leukemia 2016 Oct; 30(10): 2077-2080.




Deciphering the Significance of CD56 Expression in Pediatric Acute
Myeloid Leukemia: a Report from the Children’s Oncology Group

769 newly diagnosed pediatric patients with de novo AML enrolled in AAML0531
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* 10% of pediatric AML patients and 1% of adult
AML patients

e >20% bone marrow leukemic cells with at least
50% showing overt megakaryocytic lineage
commitment

* Differential diagnosis includes
* Myeloid leukemia associated with down syndrome
and/or TAM
« AML with t(1;22) (RBM15-MKL1)

When to obtain genomic data in AML and which mutations matter

DNMT3A
TET2
ASXL1
P53
1 JAK2
PPMID
2 TKI therapy 1
(]
N
@
©
o
o DNMT3A
o TET2 O
ASXLT
™s3 MDS 3

JAK2 SF3B1, SRSF2, EZH2,
PPM1D STAG2, BCOR AML VS

FLT3, RAS, KIT,
IDH1/2 TK signaling
NPM1

Y

Time

Blood Adv (2018) 2 (21): 3070-3080




[ Diagnosis of AML ]

Medical assessment

Cytogenetic and mutational analysis
* Checkavailability of clinical trial

fit

| FLT3 mut | | D33 pos’ | tAML,
AML-MRC
743 743 I—l
+ midestaurin +GO CPX-351

4

ELN adversefintermediate risk
primary refractory disease

\
:"/ W

Consolidation
or CC-486* maintenance

5

Best supportivecare
+/- cytoreductive therapy: HU
(IDH1 mut: ivosidenib®)

%ﬁ
ol

HMA/VEN*

alternativeoptions:
LDAC/VEN*
LDAC/glasdegib

IDH1 mut: ivosidenib*

Hematology Am Soc Hematol Educ Program (2021) 2021 (1): 16-23

Mixed Phenotype Acute leukemia (MPAL) Incidence

* represent ~2-3% of acute leukemias (SEERS- 0.35 cases per 1,000,000

person-years)
* M>F, peaks <19 and >60

35%

T/myeloid

B/myeloid

59%




Blast Lineage Requirements for Leukemias of

Ambiguous Lineage

* Myeloid

— Myeloperoxidase, or

—Monocytic differentiation (2 or more: NSE, CD11c, CD14,

CD64, lysozyme)

* Tlineage

— Cytoplasmic or surface CD3
* Blineage

—Strong CD19 plus strong expression of at least 1 of
CD79a, cCD22, CD10, or

—Weak CD19 plus strong expression of at least 2 of
CD79a, cCD22, CD10

Mixed Phenotype Acute Leukemia

* With t(9;22)(q34;911.2); BCR-ABL1
* With t(v;11923); MLL rearranged

* B/myeloid, NOS

* T/myeloid, NOS

* NOS, rare types
* T/B
* T or B/megakaryocyte
* T or B/erythroid




Cytogenetics of MPAL

* £(9;22)/(Ph) (20%)- D/D CML blast crisis (190 versus 210 kDa)

complex 32%
* aberrant 27%
* Normal 13%.

T2A- 8% - most frequently in infants

? AML-MRC or MPAL
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159 cases of pediatric ALAL

Exome (n=92), transcriptome (n=95),
whole genome (n=47) sequencing
SNP array (n=95)

158 recurrently altered genes

Nature. 2018 Oct; 562(7727): 373-379.




ETP ALL vs T-Myeloid MPAL

Early T-cell Precursor (ETP) ALL: CD3+, CD1a-, CD8-, CD5- (or dim), expression of myeloid/stem cell antigens
T-Myeloid MPAL: CD3+ and requires MPO
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Copy-number gain
Loss of heterczygosity

Mixed Phenotype Acute Leukemia - Leukemia blasts express specific antigens from multiple leukocyte lineages
ZNF384 rearranged - Leukemia blasts express antigens from multiple lineages
AND the presence of a ZNF384 rearrangement

Ph-like - Leukemia blasts express antigens from multiple lineages
AND the presence of a Ph-like gene expression profile

KMT2A rearranged - Leukemia blasts express antigens from multiple lineages
AND the presence of a KMT2A rearrangement
BCR-ABL positive - Leukemia blasts express antigens from multiple lineages
AND the presence of a BCR-ABL fusion
T/myeloid, with WT1 mutations - Leukemia blasts express both T-lymphoid and myeloid antigens
AND the presence of a WT1 mutation
B/myeloid, NOS - Leukemia blasts express both B-lymphoid and myeloid antigens without a recurrent genetic abnormality
T/myeloid, NOS - Leukemia blasts express both T-lymphoid and myeloid antigens without a recurrent genetic abnormality
Not otherwise specified - Leukemia blasts express both B and T-lymphoid antigens
OR T-lymphoid, B-lymphoid, and myeloid antigens without a recurrent genetic abnormality

Acute Undifferentiated Leukemia - Leukemia blasts do not express any lineage defining antigens
Ph-like - Leukemia blasts do not express any lineage defining antigens

AND the presence of a Ph-like gene expression profile

KMT2A rearranged - Leukemia blasts do not express any lineage defining antigens
AND the presence of a KMT2A rearrangement
Not otherwise specified - Leukemia blasts do not express any lineage defining antigens
AND there is no recurrent genetic abnormality




B/T MPAL

Bone marrow aspirate |48t 4 Bone marrow core biopsy Bone marrow core biopsy (high power) E
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NK Lymphoblastic leukemia

* NK-lymphoblastic leukemia has been difficult to define; only rare case
reports

* Varying terminology has been used over the years

* Myeloid/NK acute leukemia
* Overlap with AML with minimal differentiation

* Blastic NK cell ymphomas/leukemias
* Now recognized as blastic plasmacytoid dendritic cell neoplasm (BPDCN)

* Considered as provisional entity in WHO classification
* Expression of CD56, CD7 and CD2, and cCD3
¢ Absence of B-cell and myeloid markers
* TCRand IG genes are in the germline configuration

Blood 2016;127(20):2391-405
Leukemia & Lymphoma, 2002;43(4): 901-906

Stage1 Stage2a Stage2b Stage3 Stageda Stagedb Stage5 Stage 6
p!e NK pre-NK iNK CD56" CD56" CD56%™m CD56%m ml-NK
cell cell NK cell NK cell NK cell NK cell cell

‘ ‘ ( X X . @ @-@-e * Early NK cells mature in

/ N LY bone marrow and show

o non-specific patterns of

unCD56%™ CD56"9
NK cell NK cell

FIGURE 1 | Stages of NK cell antogenesis. Schematic representation of the different stages of NK cell differentiation in human bone marrow and secondary lymphoid e a r I y m a r ke r eX p re S S I 0 n
tissues. Gray amows and red question marks indicate the possible location in NK cell development of unCD569™, CD56™2, and mi-NK cells,
* More specific NK markers

TABLE 1 | Principal surface markers differentially expressed on NK cell developmental intermediates.
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Recent NK-LL case series

* |dentified 6 cases of NK lymphoblastic leukemia through a multi-institutional search with

clinical, pathologic, molecular and outcome data : e o1
* NK LL defined using WHO classification \ %5; @
* Expression of CD56, CD7 and CD2, and cCD3 % @ a ﬁ\
* Absence of B-cell and myeloid markers : .
* TCRand IG genes are in the germline configuration - g@ i

¢

* Compare with control CD56+ acute leukemias:
* 6 cases of AUL, 51 cases of T-ALL (14 ETP), 42 cases of AML

* NK-LL patients were significantly younger and presented with higher WBC and platelets

* Immunophenotypic differences
* frequent expression of cytoplasmic CD3 and CD33 in NK-LL as compared to AUL.
« Compared to T-ALL, NK-LL cases showed less frequent cCD3, CD4, and CD10
* NK-LL patients showed brighter CD56 expression as compared to ETP-ALL patients and less
frequent cytoplasmic CD3
* No Difference in rates of abnormal karyotypes between all 4 groups

Mod Pathol 2021 Jul;34(7):1358-1366

Mutational Profile

NK LL AUL T-ALL AML
NOTCH1 I B I
i R e m
PHF6
JAK3 0B [ |
RUNX1 [ ]

DNMT3A [ | [ |
TET2
ASXL1

2015

Total Mutations 6735020 1311112511325542 33361723333234525422364223423

1 1
Abnormal karyotype . - . - . -

¢ Significant enrichment :
¢ NOTCH1 mutation in NK LL as compared to AML (p=0.002)
e ETV6 mutations in NK LL as compared to T-ALL (p=0.004) and AML (p=0.0022)
e JAK3in NK LL as compared to AML (p=0.02)

* Significant absence :
e TET2 mutation in NK LL as compared to AML (p=0.05)

* Total mutations are significantly higher in NK LL as compared to T-ALL (5 vs 2, p=0.04)
Mod Pathol 2021 Jul;34(7):1358-1366




Clinical Outcome
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* All 6 NK LL patients treated with ALL type therapy upfront while 5/6 AUL
patients treated with AML therapy

* BMT: 1/6 NK LL, 3/6 AUL, 12/51 T-ALL patients, 16/42 AML patients

Mod Pathol 2021 Jul;34(7):1358-1366

Acute Undifferentiated Leukemia (AUL)

* Rare type of acute leukemia that shows no evidence of differentiation
along any lineage

* Little is known about AUL, including the optimal number and types of
myeloid markers allowed in this diagnosis.

* AML with minimal differentiation is a subtype of AML, not otherwise specified (NOS)
in the WHO classification and roughly correlates with AML-MO in the French-
American-British classification.

* 5% or less of all AML cases, is by definition negative for myeloperoxidase, and
expresses at least two myeloid marker, usually CD13, CD33 and/or CD117

* Clinical, immunophenotypic and genetic data is limited and it is uncertain if AUL is
biologically distinct from AML with minimal differentiation/AML MO




AUL multi-institutional study

* 89 cases from 8 academic institutions identified on search AUL or AML
MO/AML minimal differentiation

* 31 are re-classified as AML MRC on basis of having complex/MDS
type of karyotype [excluded from AUL]

e 27 AUL and 30 AML MO/AML minimal differentiation
* 6 AUL cases (22%) showed no myeloid marker expression (CD117, CD13
or CD33)

* 15 AUL cases (55%) showed partial or full expression of 1 myeloid marker

* 3 (11%) showed expression of 1 myeloid marker + weak/partial expression of
another myeloid marker on the blasts

Weinberg O Mod Pathol. 2019 Sep;32(9):1373-1385.

AUL multi-institutional study

* Immunophenotype: TdT and CD123 more prevalent in AUL
* None of the cases expressed cytoplasmic or surface CD3, but expression of
other T-cell associated antigens was commonly seen on blasts (11/24, 46%)

* Fourteen AUL cases (58%) had a normal karyotype, and of the
abnormal karyotypes, 5 had trisomy 13 (55%)

* Molecular: PHF6 mutations more frequent in AUL (5/15 vs 0/19,
p=0.016)

* Re-assigning cases with expression of second myeloid markers to AML shows
more signficant association with PHF6 mutations (5/13 vs 0/21, p=0.0046).

* Other frequent mutations included SRSF2, RUNX1, ASXL1 and
DNMT3A

Weinberg O Mod Pathol. 2019 Sep;32(9):1373-1385.




Overall survival Overall survival censoring

for stem cell transplant

100 100+

- AUL

— 80 - AUL == AML-MO
© = 804
% =t AML-MO 2 == AML-MRC
7z 60 —— AML-MRC S 601
2 2
8 40 g 404
o o
o 20 = 204 _]

0 v : - % 2 % @

50 100 150

Months LS

* 27 AUL patients presented with similar age, blood counts, bone marrow
cellularity, and blast percentage as the 31 AML MD patients

* Most AUL patients were treated with AML type therapy with ~50% achieving
complete remission

®* 31 AML MRC patients showed high frequency of complex karyotype and
TP53 mutations Weinberg O Mod Pathol. 2019 Sep;32(9):1373-1385.

Model of PHF6 in Hematopoietic Malignancies

The timing and context of the acquisition of PHF6 deletions/mutations appear to determine the fate of the resulting
malignancy.

Myeloid Precursor

! —13\

T-Cell Precursor
Myeloid Precursor B-Cell Precursor

Ixxh

AML T/M MPAL B/T MPAL T-ALL

Front Oncol 2021 Jul 26;11:704471. doi: 10.3389/fonc.2021.704471




Acute leukemia

— \

Acute myeloid leukemia Acute leukemia of ambiguous lineage

T- Iymphoblastlc leukemia
B-lymphoblastic leukemia \

Extensive immunophenotypin Others- NK etc

Mixed phenotypic acute leukemia Acute undifferentiated leukemia
= Specific translocation Not otherwise specified \
= BCR-ABL1 / 1 \ B/T
= KMT2A
B/myeloid T/myeloid B/T/myeloid
Conclusions

* Large-scale sequencing studies of hematologic malignancies have revealed
numerous genetic findings in myeloid neoplasms with some correlations
with phenotype

* Mixed-phenotype acute leukemia is a diagnostic and therapeutic
challenge owing to its heterogeneity, overlapping features with other
types of ALL and AML, and lineage plasticity.

* Several unresolved questions about the diagnostic criteria for MPAL that
will require further studies of the correlation between
immunophenotype, genotype, lineage plasticity, and therapeutic response
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