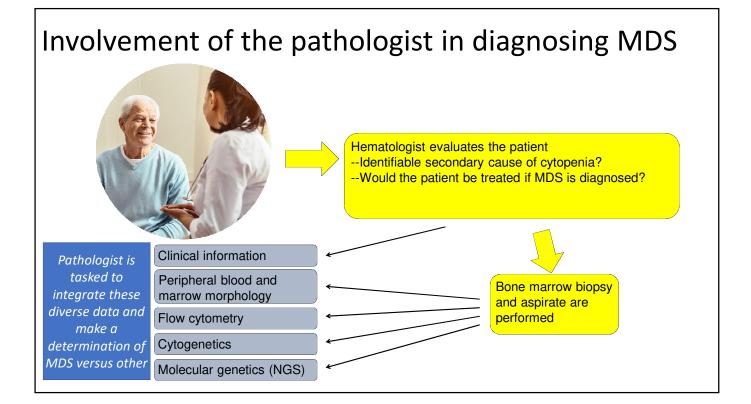
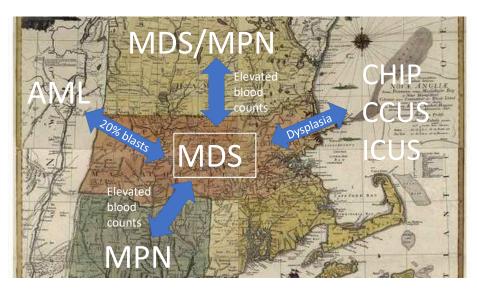
MYELODYSPLASTIC SYNDROME AND ITS DIFFERENTIAL DIAGNOSIS


Robert P Hasserjian Massachusetts General Hospital, Boston, MA

Outline of lecture

- Review the overall pathway to diagnosing myelodysplastic syndromes (MDS), including appropriate application of current diagnostic criteria
- Present pitfalls in applying current criteria to cytopenic patients undergoing bone marrow evaluation
 - Including differential diagnosis of neoplastic and non-neoplastic mimickers of MDS

Myelodysplastic syndromes


- Hypercellular, clonal marrow proliferations
- Ineffective hematopoiesis
 - Intramedullary cell death of maturing hematopoietic elements
 - Peripheral cytopenias
- Disordered maturation
 - Dysplastic morphology
- Characteristic portfolio of somatically acquired genetic abnormalities in the malignant clone

Criteria for diagnosing MDS

- Cytopenia(s)(at least 1)
 - Hemoglobin <12 g/dL (women) or <13 g/dL (men)
 - ANC <1.8 x 10⁹/L
 - Platelets <150 x 10⁹/L
- Dysplasia
 - At least 10% of cells appear dysplastic in at least 1 hematopoietic lineage
 - More dysplasia allows a more confident diagnosis
- Clonality:
 - Cytogenetic abnormality in ~50%
 - Somatic mutation found by NGS in ~90%

The boundaries of MDS present many opportunities to 'get lost'!

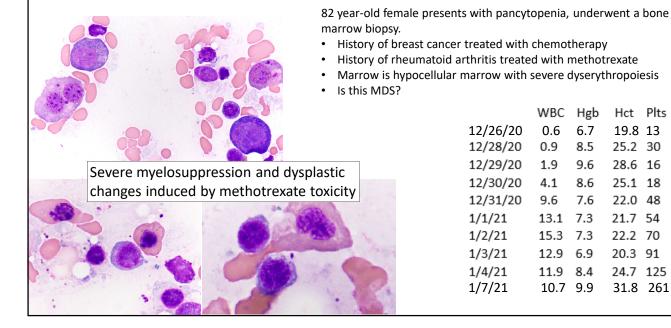
Nuanced assessment of cytopenia is an important first step in the diagnosis of MDS

- Know the complete CBC results (including WBC differential) at the time the bone marrow sample was taken
- Know the features that can support MDS over and above a simple 'cytopenia present or absent' assessment
 - Duration of cytopenia: MDS cytopenias are chronic and stable or inexorably worsening
 - Comorbid conditions that can cause cytopenia: can steer away from MDS diagnosis
 - Type and depth of cytopenia
 - Mild (hemoglobin 10-12 g/dL) isolated anemia not uncommon in early MDS, but isolated mild thrombocytopenia or neutropenia would be very unusual

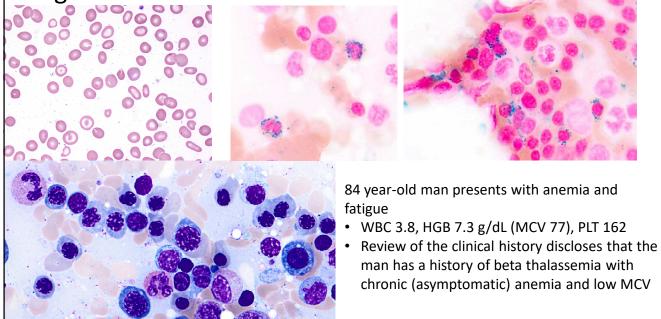
Longitudinal review of blood counts can help avoid a misdiagnosis of MDS: Case 1

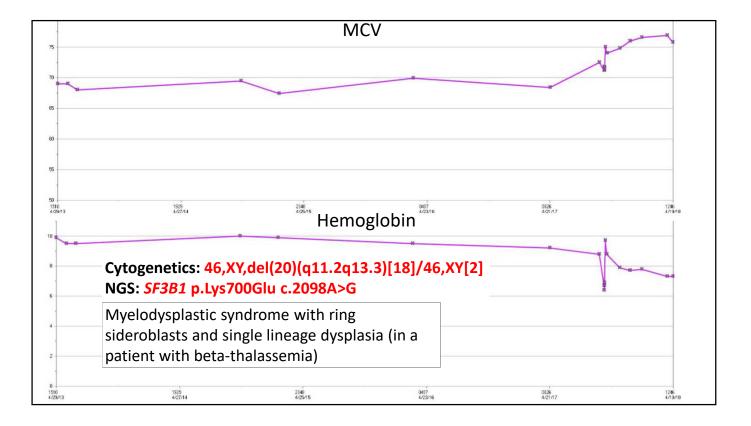
6.7

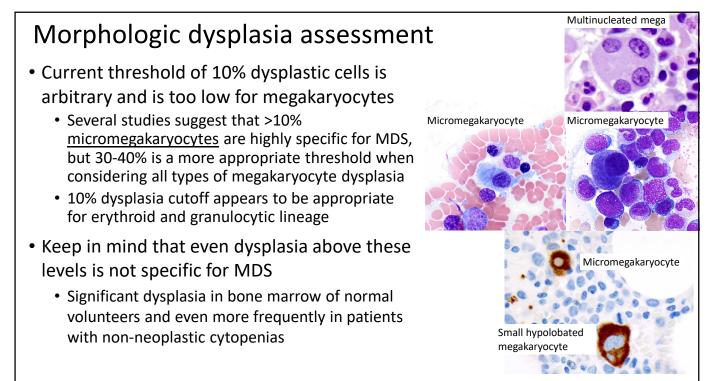
19.8 13 25.2 30


28.6 16

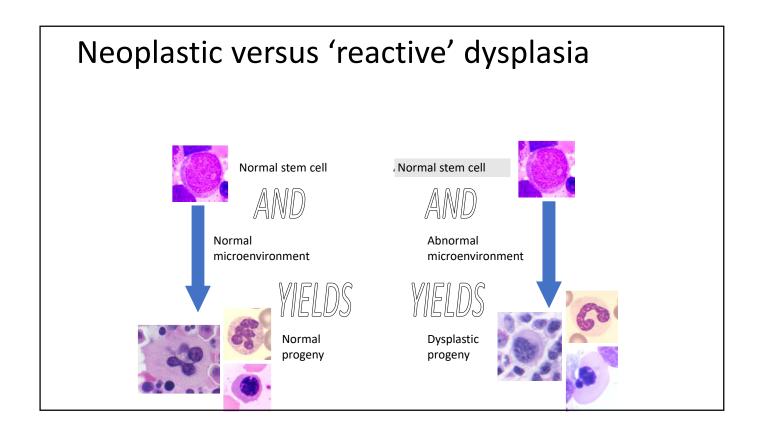
25.1 18


21.7 54

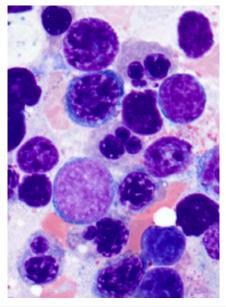

20.3 91 24.7 125


31.8 261

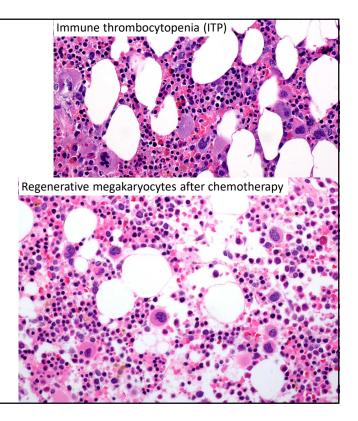
Longitudinal review of blood counts can help support a diagnosis of MDS: Case 2



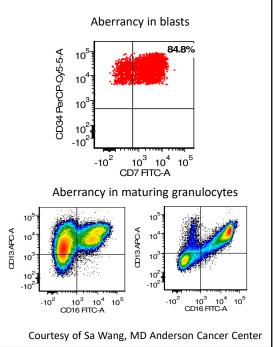
Font P Ann Hematol 2013;92:19, Parmentier S Haematologica 2012;97:723, Matsuda A Leukemia 2007;21;678; Della Porta MG Leukemia 2015;29:66


Morphological abnormalities ^a	Cutoff values ^b	AUC	Cohen's K-coefficient (inter-observer agreement) ^c
Erythroid lineage 9% false positive			
Megaloblastoid changes	>5%	0.814, P < 0.001	0.83
Bi- or multinuclearity	>3%	0.679, P < 0.001	0.87
	>5%	0.698, P<0.001	
Nuclear lobulation or irregular contours	>3%	0.674, P<0.001	0.84
Pyknosis	>5%	0.677, P<0.001	0.81
Cytoplasmic fraying	≥7%	0.602, P<0.001	0.82
Ring sideroblasts	>5%	0.650, P<0.001	0.95
	≥15%	0.719, P<0.001	
Ferritin sideroblasts	≥30%	0.670, P<0.001	0.92
Granulocytic lineage 5% false positive			
Myeloblasts	>3%	0.777, P<0.001	0.92
	>5%	0.723, P<0.001	
Auer rods	≥1%	0.524, P = 0.001	0.90
Pseudo Pelger-Hüet anomaly	>3%	0.714, P<0.001	0.87
	>5%	0.814, P<0.001	
Abnormal nuclear shape	≥7%	0.700, P<0.001	0.86
Neutrophil hypogranulation	>3%	0.791, P<0.001	0.81
11% false positive	>5%	0.821, P<0.001	
Megakaryocytic lineage			
Micromegakaryocytes	>5%	0.916. P < 0.001	0.88
Small binucleated megakaryocytes	>5%	0.845, P = 0.001	0.81
Megakaryocytes with multiple separated nuclei	>5%	0.750, P < 0.001	0.84
Hypolobated or monolobar megakaryocytes	>5%	0.646, P < 0.001	0.86

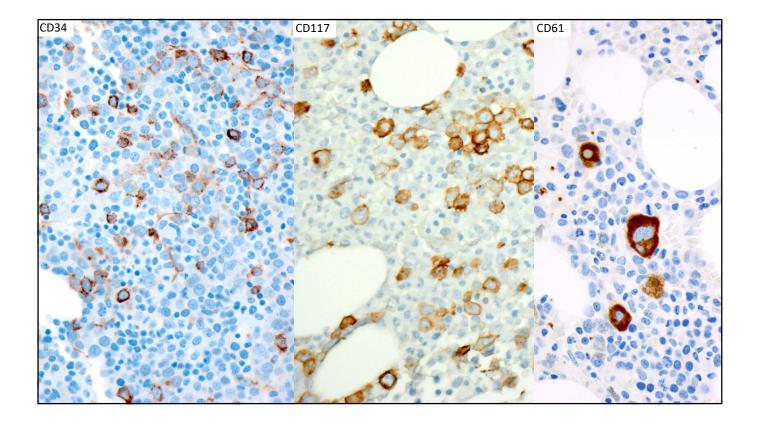
Navigating the minefield of 'false dysplasia': stress dyserythropoiesis


- Left shift and erythroid dysplasia due to exuberant non-neoplastic erythroid hyperplasia
 - Hemolytic anemia (immune or inherited)
 - Megaloblastic anemia
 - Recovery post-chemotherapy
- Lack of dysplasia in other lineages and lack of other cytopenias are helpful clues to avoid misdiagnosing as MDS

Stress erythropoiesis in β -thalassemia

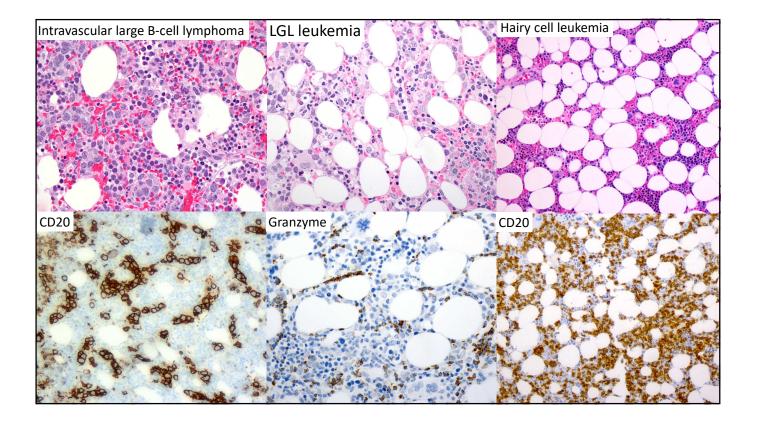

Regenerative 'dysmegakaryopoiesis'

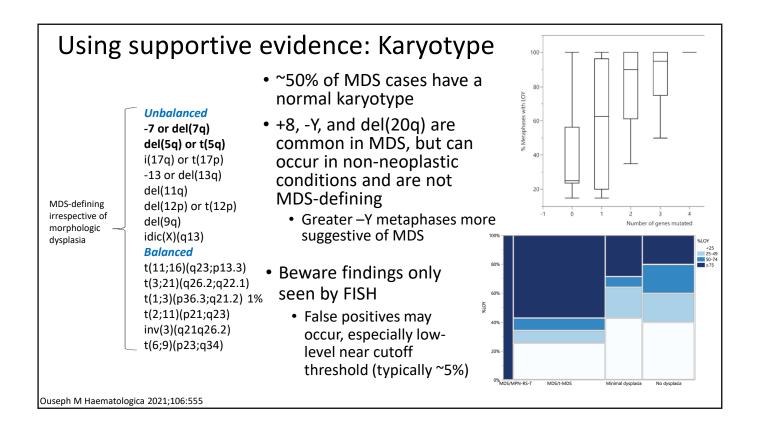
- Small, hypolobated megakaryocytes are frequently seen in reactive settings
 - Peripheral platelet destruction
 - Post chemotherapy regeneration
 - Other acute/subacute marrow injury
- In reactive megakaryocyte proliferations such as ITP, a spectrum of morphologies is usually present

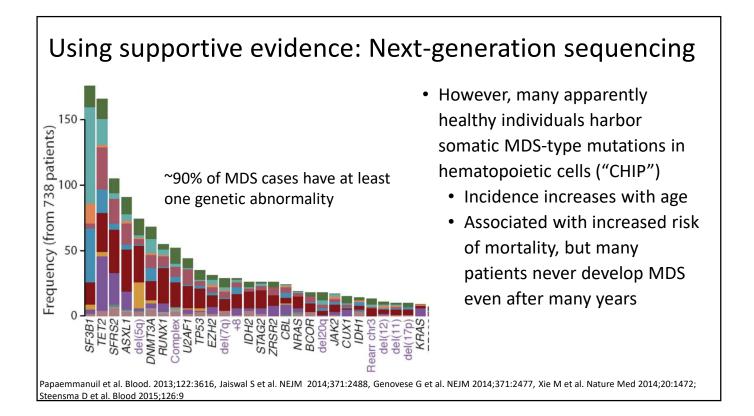

Using supportive evidence: flow cytometry

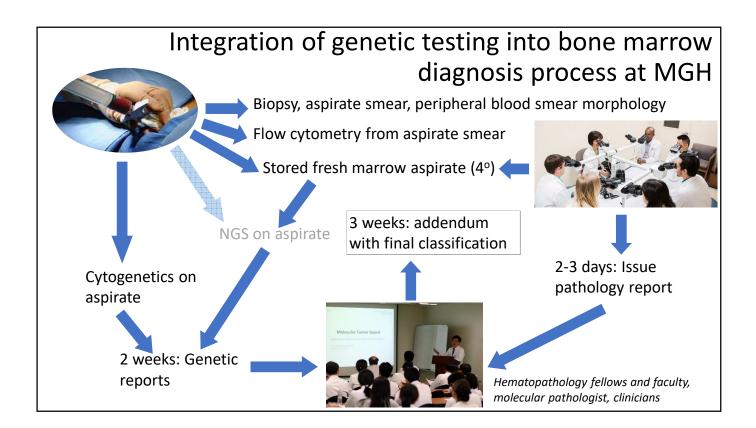
- Evaluate for a lymphoma or myeloma that could mimic MDS in clinical presentation
 - B-cell clonality assessment
 - T-cell assessment
 - Plasma cell clonality assessment
- Do not read too much into blast %
 - Usually correlates with the aspirate blast count, but should never be used in lieu of the morphologic blast enumeration
 - Blasts can be expressed as % of all events or % of non-erythroid events
- Antigenic aberration in blasts or myeloid/monocytic compartments can help support a diagnosis of MDS

Immunohistochemistry in MDS diagnosis


- May not be necessary if adequate flow cytometry and high-quality aspirate smears are obtained
- Essential if biopsy is crushed and/or aspirate is markedly hemodilute
- Useful to identify abnormal cells that may be subtle on routine histology or poorly detected by flow cytometry
 - Facilitate the identification of micromegakaryocytes (CD61)
 - Enumerate blasts to corroborate aspirate blast count
 - Disclose subtle neoplastic infiltrates that may mimic MDS clinically
 - Large cell lymphomas (CD20, PAX5, CD3)
 - Plasma cells (CD138, kappa, lambda)
 - Mast cells (CD117, tryptase)



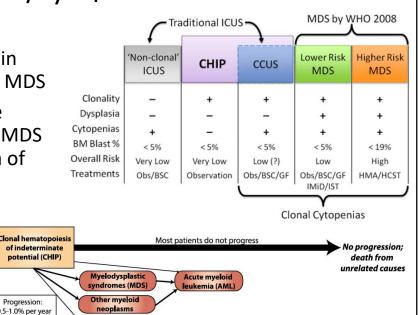

Lymphomas presenting with cytopenias and no or minimal lymphocytosis/lymphadenopathy


- Hairy cell leukemia
- Large granular lymphocyte leukemia
 - Cytopenias are often more severe than the degree of infiltration would suggest
- Diffuse large B-cell lymphoma
 - More common in elderly and immunosuppressed
 - Patient may lack lymphadenopathy
- Classic Hodgkin lymphoma
 - More common in elderly and immunosuppressed

MDS and other clonal/cytopenic conditions

• Clonal hematopoiesis is a precursor state to MDS, but in and of itself does not define MDS Clonality • Morphologic dysplasia is the Dysplasia

Myeloid progenito

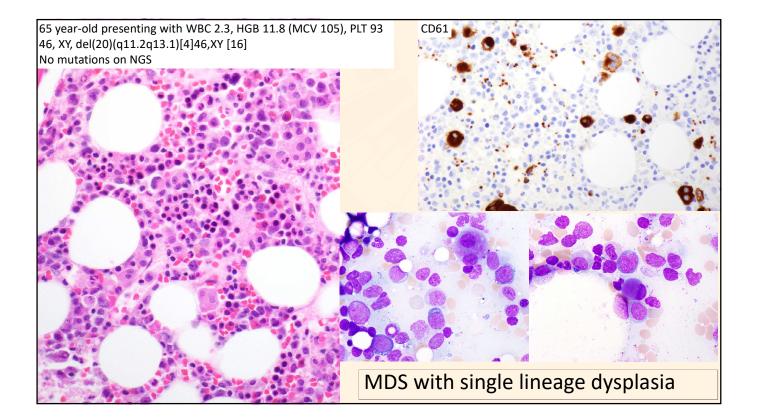

ymphoid progenitor o

ultinotential progenit or stem ce

Progression: 0.5-1.0% per yea

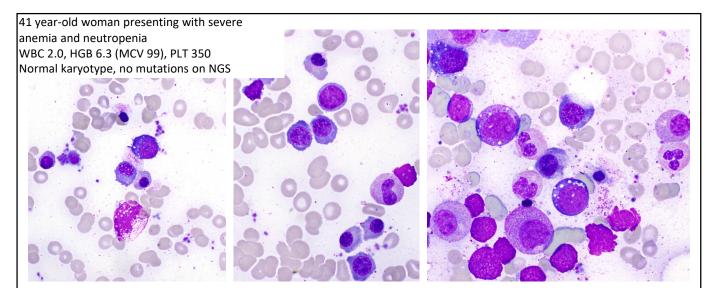
Lymphoid neoplasms

main feature that separates MDS from CCUS (clonal cytopenia of undetermined significance)



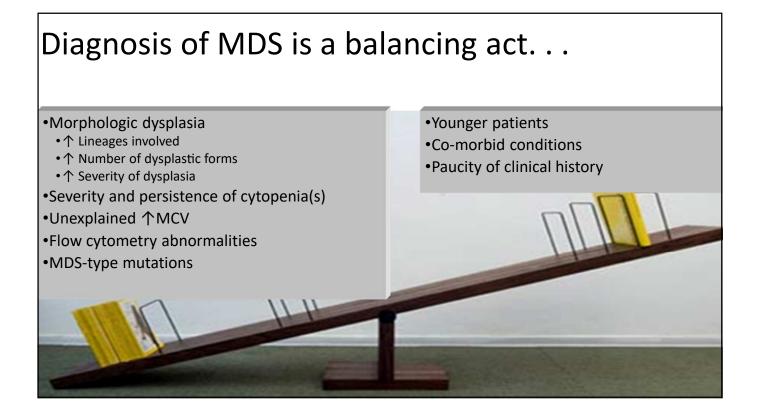
Steensma et al. Blood 2015; 126:9

Role of NGS in evaluating cytopenias


- Currently, there are no mutations or mutation patterns that are considered diagnostic of MDS in isolation
 - Many apparently healthy aging individuals harbor somatic MDS-type mutations in hematopoietic cells
 - Termed "Clonal hematopoiesis of indeterminate potential" AKA "CHIP"
 DNMT3A, TET2, ASXL1, TP53, JAK2, SF3B1 most common
- Mutation data can be used to support an MDS diagnosis suspected on morphology (especially if multiple and at high VAF)
 - Some dysplasia (>10%) still required to establish an MDS diagnosis
- Lack of mutations can be reassuring and stimulate a deeper search for non-MDS causes of the cytopenia
 - However, keep in mind that 5-10% of bona fide MDS cases may have normal cytogenetics and lack mutations on current NGS panels

Jaiswal S NEJM 2014;371:2488, Genovese G NEJM 2014;371:2477, Xie M Nature Med 2014;20:1472, Malcovati L et al. Blood 2017;129:3371, Wang SA AJH 2021;96:E420

Non-neoplastic causes of cytopenia and dysplasia


- Drugs/toxins
 - Recent (<6 months) chemotherapy
 - Heavy alcohol intake
- Metabolic deficiencies: B12, folate, copper
- 'Stress erythropoiesis' due to hemoglobinopathies or acquired/congenital hemolytic anemias
- Infections, especially HIV and Hepatitis C
- Autoimmune diseases
- Marrow failure
 - Acquired aplastic anemia
 - Congenital bone marrow failure syndromes
- Germline mutation associated with altered hematopoiesis
 - RUNX1, ANKRD26, ETV6

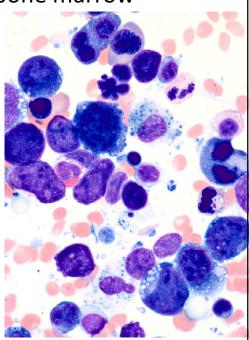
Patient had been taking zinc supplements and was found to be severely copper deficient (<0.10 mcg/mL), blood counts normalized after copper supplementation

Diagnosis: Copper deficiency

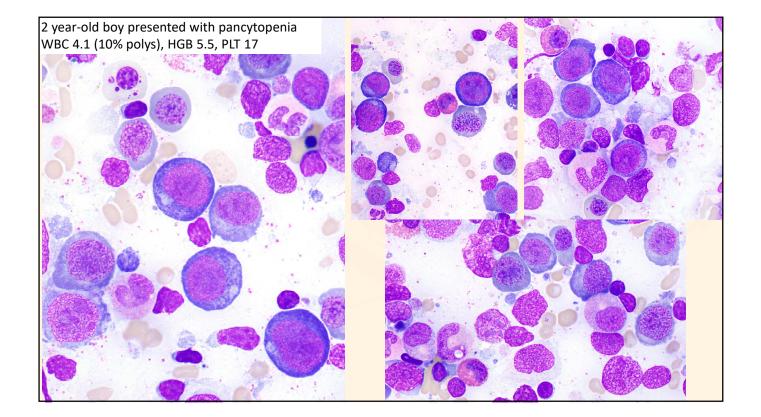
Case courtesy of Elizabeth Courville, University of Virginia

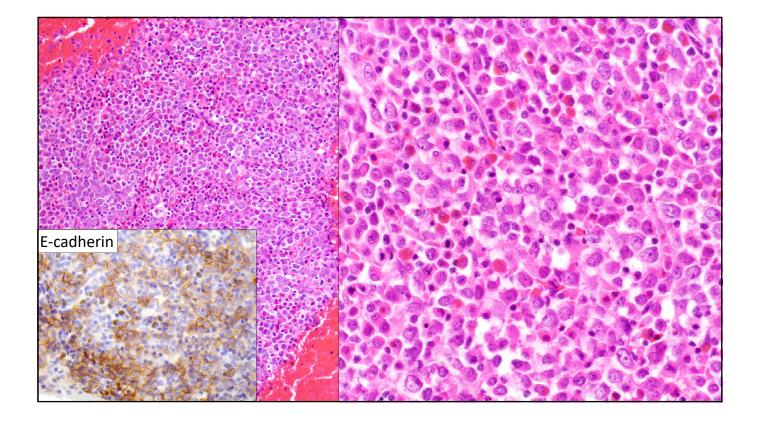
What if it's not clearly MDS, but there's no specific diagnosis?

- A common occurrence in the workup of the cytopenic patient!
- Anemia of chronic inflammation
 - Often increased iron in marrow histiocytes
- Reactive causes which may or may not become evident later
 - Test of time: transient causes will eventually resolve
- Early MDS cases which are not well-developed enough for definitive diagnosis
 - Test of time: cytopenia is refractory or worsens
 - OK to hedge on the initial marrow in these situations: marrow can be repeated at a later date if cytopenias persist or worsen
- Clonal cytopenia of undetermined significance (CCUS)
 - Clinicians are now more aware of this entity as a pre-MDS and should follow the patient closely



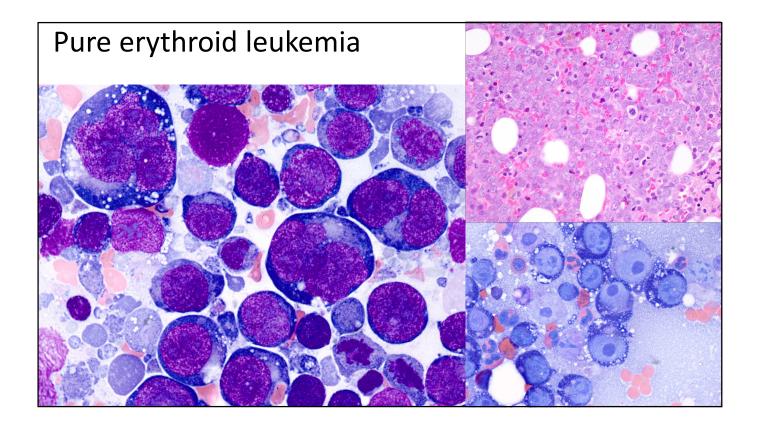
Problems posed by specific scenarios

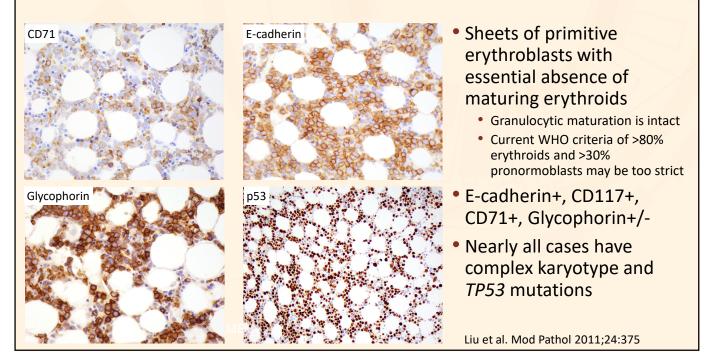

- Erythroid-predominant hypercellular marrow
 - Erythroid-rich MDS or erythroleukemia or florid reactive erythroid hyperplasia?
- Fibrotic marrow
 - MDS with fibrosis, myeloproliferative neoplasm, or reactive fibrosis?
- Hypoplastic marrow
 - Hypoplastic MDS or aplastic anemia?


Challenges with erythroid predominant-bone marrow

- 15% of MDS cases have erythroid predominance (>50% erythroid elements)
- Blasts are always counted as a percentage of all cells, never non-erythroids
- MDS with erythroid predominance encompass two types of cases
 - MDS-EB (BM blasts ≥5%): Aggressive behavior, higher incidence of complex karyotype and TP53 mutation
 - MDS-SLD and MDS-RS: Tend to exhibit indolent behavior
- Must exclude florid reactive erythroid proliferations and pure erythroid leukemia

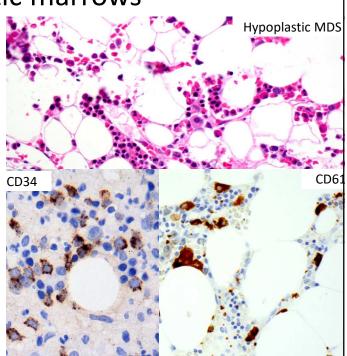
Hasserjian RP Blood 2010;115:1985, Wang SA Mod Pathol 2016; 29:1221, Wang SA Mod Pathol 2008;21:1394, Bacher U Haematologica 96;1284



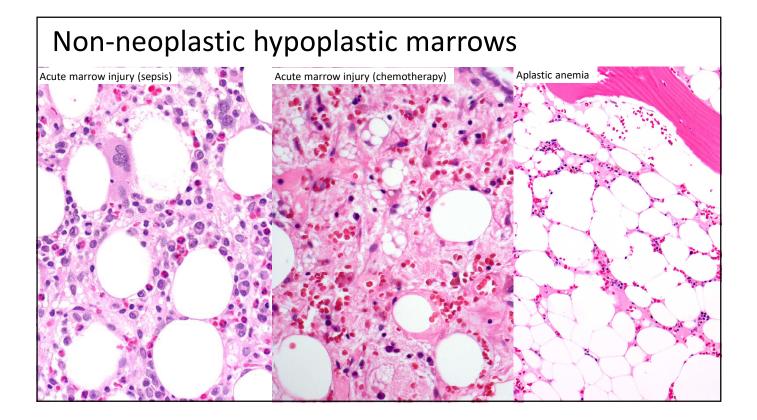

Clinical followup

- Found to be Vitamin B12 deficient
 - Methylmalonic acid level 10,700 nmol/L [normal 87-318 nmol/L]
- After Vitamin B12 supplementation, blood counts improved markedly
 - WBC 7.8, HGB 10.8, PLT 199 after 2 weeks

Diagnosis: Megaloblastic anemia



Immunoprofile and genetics of pure erythroid leukemia



Challenges with hypoplastic marrows

- Hypoplastic MDS (<30% cellular)
 - About 10% of cases
 - Differential diagnosis with aplastic anemia
 - CD34 and CD61 immunostains of biopsy can aid in diagnosis and prognosis
- Differential diagnosis
 - Aplastic anemia
 - Acute marrow injury

Yue G et al. Leuk Res 2008;32:553, Della Porta MG et al. Leukemia 2015;29:66

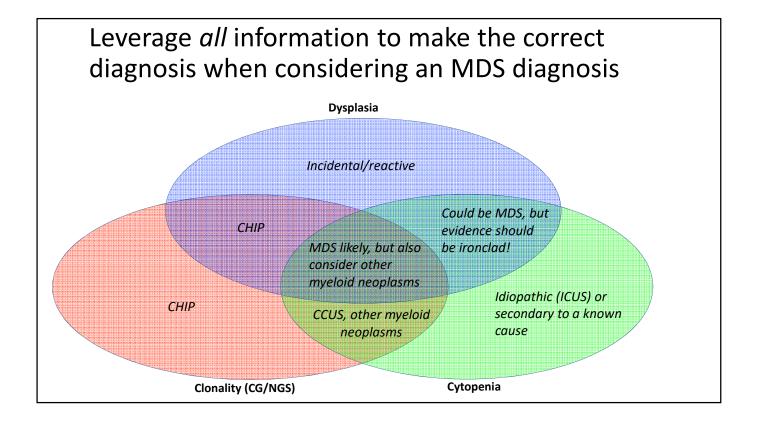
Hypoplastic MDS vs aplastic anemia MDS AA

- Older (median 46-63)
- Blasts may be increased, aberrant antigen expression by flow cytometry
- Dysplasia is present, including micromegakaryocytes
- 40-48% have cytogenetic abnormalities
- Lymphocytes and plasma cells may be increased in both Both may have acquired somatic mutations (BCOR/BCORL, PIGA, DNMT3A, ASXL1 in AA)

- Younger (median 23-40)
- No increase in blasts, normal phenotype
- No dysplasia in residual hemopoietic elements, no ring sideroblasts
- 2-12% cytogenetically abnormal
 - 'Non-qualifying' abnormalities, e.g. +8
 Size of PNH Clone

AA MDS

Huang TC Leukemia 2008;22:544. Otawa M Leuk Res 2000;24:359. Calado RT. Semin Oncol 2011;38:667. Koh Y Leuk Res 2010;1344-1350. Yue G Leuk Res 2008;32:553. Orazi A and Bennett J Haematologica 2009:94:268, Yoshizato T NEJM 2015;373:35, Fatizzo B Leukemia 2021;35:3223


Hypoplastic MDS helpful features

Variable	Cohen's K-coefficient (inter-operator variability)	Score value
Cytological parameters		
Morphological erythroid dysplasia (according to morphological score)	0.81	1
Morphological granulocytic dysplasia (according to morphological score)	0.83	1
Histological parameters		
Hypolobulated, multinucleated megakaryocytes	0.82	1
CD34+ progenitor cells \geq 5%	0.91	2
Presence of CD34 + cell clusters	0.90	1
Molecular features		
Abnormal karyotype (excluding trisomy 8)	—	2
bbreviations: MDS-Hypo, myelodysplastic syndromes with marrow hypocellularity. A ported in Supplementary Figure 4. ^a A score value \geq 3 is suggestive for a diagnos	5	th MDS-Hypo a

MDS with fibrosi Challenges with fibrotic marrow Increased marrow reticulin fibrosis has a broad differential diagnosis Most causes of increased marrow reticulin (grade 2-3/3) are neoplastic (MPN and some MDS) but also consider non-neoplastic Reticulin stain causes • Infections, especially HIV Autoimmune disease • May present as cytopenia in a patient with no known autoimmune disease • Grade 2-3 reticulin is a poor prognostic factor in MDS Fu B Mod Pathol 2014;27:681, Della Porta MG JCO 2009;27:754

Disease	Megakaryocyte appearance	Other features
Primary myelofibrosis	Enlarged, hyperchromatic, 'bulbous' nuclei	Splenomegaly, myeloid hyperplasia
Fibrotic phase of PCV or ET	Variably enlarged, often hyperchromatic nuclei	History of prior PCV or ET with progressive marrow fibrosis
MDS with fibrosis	Small, hypolobated nuclei	Morphologic dysplasia, often increased blasts
Hairy cell leukemia	Normal	Clonal B-cells with typical immunophenotype, monocytopenia
HIV	Normal or small, frequent naked nuclei	Plasmacytosis, lymphoid aggregates
Autoimmune myelofibrosis	Normal	Lymphoid aggregates, history of autoimmune disease

Г

Conclusions

- A wide variety of reactive and neoplastic conditions may present with cytopenia (and sometimes dysplasia) potentially mimicking MDS
- Accurate diagnosis requires integrating information from multiple modalities and weighing the 'strength of evidence'
- Always keep the clinical context in mind
 - Try to evaluate the tempo of cytopenias and rigorously seek secondary 'excuses' for cytopenia
- Genetic information provides important information and can aid in distinguishing MDS from reactive mimics