

SMALL B-CELL LYMPHOMAS

Classification

CD5+

- Chronic lymphocytic leukemia/small lymphocytic lymphoma
 - Monoclonal B-cell lymphocytosis
- Mantle cell lymphoma
 - Leukemic non-nodal mantle cell lymphoma
 - In situ mantle cell neoplasia

CD10+

- Follicular lymphoma
 - Testicular follicular lymphoma
 - In situ follicular neoplasia
 - Duodenal-type follicular lymphoma
- Pediatric-type follicular lymphoma
- Large B-cell lymphoma with IRF4 rearrangement
- Primary cutaneous follicle center lymphoma

CD5-/CD10-

- Lymphoplasmacytic lymphoma
- Hairy cell leukemia
- Splenic B-cell lymphoma/leukemia, unclassifiable
 - Splenic diffuse red pulp B-cell lymphoma
 - Hairy cell leukemia, variant
- Splenic marginal zone lymphoma
- Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma)
- Nodal marginal zone lymphoma
 - Pediatric nodal marginal zone lymphoma

CD5-/+

B-cell prolymphocytic leukemia

Gray areas/caveats

Monoclonal B-cell lymphocytosis (MBL)

- circulating clonal B cells <5x10⁹/L
- no documented lymphadenopathy, organomegaly, other extramedullary disease
- patients with MBL can have bone marrow involvement (interstitial, non-paratrabecular lymphoid aggregates, diffuse) ranges, but on average accounts for ~20% of the cellularity
- difference in definitions:
 - International Workshop on CLL* (iwCLL): "the presence of a cytopenia caused by a typical marrow infiltrate establishes the diagnosis of CLL regardless of the number of peripheral blood B lymphocytes or of the lymph node involvement"
 - WHO: "the [4th ed] revision will eliminate the option to diagnose CLL with <5x10⁹/L peripheral blood CLL cells in the absence of extramedullary disease, even if there are cytopenias or disease-related symptoms"

Limited nodal involvement by CLL-like cells

- sometimes this is an incidental flow finding in lymph nodes taken out for other reasons (subtle by morphology/IHC) → recommend PB flow cytometry evaluation to exclude circulating component at ≥5x10⁹/L
- if circulating CLL-like count is <5x10⁹/L, probably best considered "nodal MBL" (*not* SLL) <u>if</u>: architecture not effaced; proliferation centers not identified; lymph nodes are <1.5cm by imaging

Hallek M et al. Blood. 2018;131(25):2745-2760. Ganapathi KA et al. Haematologica. 2014; 99(9). Strati P, Shanafelt TD. Blood. July 23 2015;126(4). Randen U et al. Am J Clin Pathol. 2013;139:390-395.

CHRONIC LYMPHOCYTIC LEUKEMIA/SMALL LYMPHOCYTIC LYMPHOMA

Proliferation centers

Lymph node:

- diffuse effacement; occasionally vaguely nodular
- proliferation centers: small lymphocytes, prolymphocytes and paraimmunoblasts

Proliferation centers - potential pitfalls

- proliferation centers in up to 30% of cases of CLL/SLL can have cyclin D1 expression
- <u>no</u> t(11;14)
- no SOX11 expression by IHC
- does not = mantle cell lymphoma

 proliferation centers in the majority of cases of CLL/SLL have at least subset MYC expression by IHC

- <u>no</u> MYC rearrangement by FISH; few cases with MYC hyperdiploidy by FISH
- does <u>not</u> = transformation to large-cell lymphoma

Gibson SE et al. Br J Haematol. 2016;175, 161–175. Gradowski JF et al. Am J Clin Pathol. 2012;138:132-139.

CHRONIC LYMPHOCYTIC LEUKEMIA/SMALL LYMPHOCYTIC LYMPHOMA

Proliferation centers - confluent

- proliferation centers broader than 20x field or becoming confluent and/or Ki67 >40% or mitoses >2.4/PC
- association with deletion in 17p13 or trisomy 12
- has been referred to as "accelerated CLL"
- not an official category in the current WHO
- challenging "gray zone" histologically
- distinct from DLBCL (often requires excisional biopsy)
 - DLBCL = confluent sheets of large B cells with a nuclear size equal to or exceeding that of normal macrophage nuclei or more than twice the size of a normal lymphocyte
- clinical trial study showed that only 33 of 40 (82.5%) cases submitted as Richter transformation were consistent with RT following expert central review
 - large proliferation centers
 - variably confluent and serpiginous proliferation centers
 - high proliferation index (sometimes thick section or associated normal bone marrow)
- comment upon in report given association with more aggressive clinical course
 - note that outcomes studies were before the current therapy era

Soilleux EJ et al. Histopathology. 2016;69, 1066–76. Gine E et al. Haematologica. 2010:95(9):1526-33. Ciccone M et al. Leukemia. 2012;26:499–508. Oscier D et al. Br J Haematology. 2016;174, 767–775. Chabot-Richards D et al. Chp 14. Hematopathology 2rd ed. 2016.

Hodgkin/Reed-Sternberg (HRS) cells

- "Type I" pattern, or CLL/SLL with HRS-like cells (CLL-HRS)
 - HRS cells sparsely distributed amongst CLL cells
 - median 4 HRS cells/high-powered field; often with T-cell rosette
 no evidence of inflammatory background typical of classic Hodgkin lymphoma
 - per 2017 WHO, does not fulfill criteria for CHL/not "Richter transformation"
 - most EBV+
 - may or may not be clonally related to CLL
 - "Type II" pattern, or Richter transformation as CHL (RT-CHL)
 - requires diagnostic RS cells in an inflammatory background typical of CHL per WHO
 - most EBV+
 - ~50% related to the CLL clone; clonally-unrelated cases associated with unmutated CLL
 - uncommon type of Richter transformation (~5%)
 - inferior prognosis compared to de novo HL

Pseudo-Richter transformation

Petrackova A et al. Blood Reviews. 2021;49: 100824

- RT occurs at a similar rate with novel agents like ibrutinib (BTK inhibitor) as traditional chemotherapy agents, although rate is lower if front-line
- If RT occurs, it is usually an early event (within the first year) and clonally related to CLL
- recent report of 5 patients with CLL/SLL receiving ibrutinib who underwent brief interruption of therapy due to upcoming surgery → developed lymphadenopathy, lymphocytosis or progressive cytopenias
- biopsies (LN or bone marrow) revealed findings morphologically consistent with RT
- histologic findings resolved upon resumption of therapy

Biopsy following resumption of therapy

Slonim LB et al. Br J Haematol. 2020;191,

Necrosis – potential pitfall

Herpes simplex virus (HSV) lymphadenitis

- well-circumscribed areas of necrosis with nuclear dust/debris, eosinophilic ghost cells, viral inclusions, neutrophils
- HSV-infected cells can be mononuclear or multinucleated, and show eosinophilic, "ground-glass" intranuclear inclusions
- can infect any cell type
- reactivation of HSV associated with lymphadenopathy is particularly seen in patients with CLL/SLL (?secondary to immunosuppression)
- can also be seen in other hematologic malignancies
- do not interpret necrosis as unequivocal evidence of Richter transformation may be HSV!

MANTLE CELL LYMPHOMA Progression (TP53 and other Leukemic non-nodal MCL oncogenic abnormalities) peripheral blood, bone marrow and splenic involvement ٠ without significant adenopathy SOX11-negative • may be CD5-negative, CD200+ • morphologically may resemble CLL/SLL ٠ Leukaemic non-nodal MCL somatic hypermutation • t(11;14) present; few if any additional karyotypic • abnormalities Consider this entity in • ATM mutation/11q22 deletion rare to absent evaluation of leukemic more indolent course/better overall survival • lymphomas – always perform cytogenetic acquisition of TP53 mutation or other oncogenic gene ٠ evaluation for t(11;14) in abnormalities may result in more aggressive behavior this setting

Swerdlow S et al. Blood. 2016;127(20):2375-239

"Classical" MCL

- involves lymph nodes and extranodal sites
- SOX11+, CD200-negative
- no evidence of transit through germinal center (unmutated)
- genetically unstable and acquires secondary driver mutations in cell cycle regulatory genes, DNA damage response pathway, cell survival mechanisms
 - ATM mutation/11q22 deletion common
- clinically aggressive course
- may progress to blastoid or pleomorphic MCL

SOX11

TABLE 1. IHC SOX11 Expression in a Series of Cyclin D1-positive or Cyclin D1-negative Lymphomas, Using the Mouse Monoclonal anti-SOX11^{MMRQ-S8}, Anti-SOX11¹⁴³, and the Goat Polyclonal Anti-SOX11^{sc-17347} Antibody Mouse Monoclonal Anti-SOX11^{MRQ-58} SOX11 Positive/Total Cases (%) (n = 205) Mouse Monoclonal Anti-SOX11¹⁴³ SOX11 Positive/Total Cases (%) Goat Polyclonal Anti-SOX11^{sc-17347} SOX11 Positive/Total Cases (%) (n = 177) Diagnosis B-LBL T-LBL CLL HCL PCM,Plasmacytoma MZL FL MCL DLBCL PBL BL BCLU T-PLL BL BCLU T-PLL Extranodal NK,T-cell lymphoma ESLU T-PLL FL Startodal NK,T-cell Nmphoma ESLU T-PLL Startodal NK,T-cell NCL NC NC NC Startodal NK,T-cell CAL STARTODAL NC Startodal NK,T-cell CAL STARTODAL NC START CCND1 Diagno (n = 209)0/4 0/9 0/3 0/4 0/10 2/4 (50) 4/4 (100) 0/9 0/3 0/4 0/10 0/8 9/9 (100) 2/43 (5) 0/9 0/2 22/32 (69) 0/5 1/2 (50) 0/1 Negative 0/4 1/3 (33) 0/9 1/3 (33) 0/3 0/10 0/10 0/8 9/9 (100) 0/43 0/9 0/2 0/32 0/5 0/2 0/1 0/10/1 9/9 (100) 1/35 (3) 0/7 0/2 6/32 (19) 0/32 (19) 1/4 (25) 0/2 0/1 0/1 0/3 0/11 0/6 0/3 0/1 0/1 0/5 0/2 0/4 20/27 (74) 0/1 0/3 0/10 0/4 0/3 0/1 0/1 0/3 0/11 0/6 0/3 0/1 0/1 0/1 0/2 0/4 0/5 0/2 Positive 20/23 (87) 18/23 (78)

AITL indicates angioimmunoblastic T-cell lymphoma: ALCL, anaplastic large cell lymphoma; BCLU, B-cell lymphoma unclassified with features intermediate DLBCL and BL.B-LBL, B-lympholisatic lymphoma; CHL, classical Hodgkin lymphoma; ECLU, chronic lymphosytic twickmine; EATL II, encorpative-suscellarity lymphoma; type II, Loldicatel ymphoma; HSTL, hepatospiceni T-cell lymphoma; MLZ, marginal zon lymphoma; NLPHL, nodular lymphos; type torkeniant lymphom; type II, Loldicate lymphoma; HSTL, hepatospiceni T-cell lymphoma; MLZ, marginal zon lymphoma; NLPHL, nodular lymphos; terotechian; lymphom; type II, Topholastistic lymphom; HSTL, hepatospicenii T-cell lymphoma; PLL, redular lymphom; NLPHL, nodular lymphom; tophom; the second lymphom; the sec d T-ci

Soldini D et al. Am J Surg Pathol. 2014;38:86-93

MANTLE CELL LYMPHOMA Infrequent IHC and FISH variations Cyclin D1 IHC+ t(11;14) FISH-MCL with cryptic CCND1 insertion into IGH locus (very rare) or MCL with CCND1 fusion with IGK or Possible IGL instead of IGH explanations or other entity: plasma cell neoplasm, CLL with expanded proliferation centers, hairy cell leukemia (weak) NGS evaluation Break-apart probes Full IHC work-up for other entities Next steps Sethi S et al. Front Oncol. 2021;11:739441.

The choice of SOX11 antibody matters!

Infrequent IHC and FISH variations

MANTLE CELL LYMPHOMA

Infrequent IHC and FISH variations

	Cyclin D1 IHC+ t(11;14) FISH-	Cyclin D1 IHC- t(11;14) FISH+	Cyclin D1 IHC- t(11;14) FISH-			
Possible explanations	MCL with cryptic CCND1 insertion into IGH locus (very rare) or MCL with CCND1 fusion with IGK or IGL instead of IGH or other entity: plasma cell neoplasm, CLL with expanded proliferation centers, hairy cell leukemia (weak)	epitope not recognized by commercial antibody	>50% of these cases have CCND2 rearrangements, with IGK, IGL or IGH			
Next steps	NGS evaluation Break-apart probes Full IHC work-up for other entities	SOX11 expression with classic morphologic features confirms MCL diagnosis	SOX11 expression with classic morphologic features confirms MCL diagnosis may be positive for CCND2 and CCND3 by IHC, but these are non- specific (CLL, follicular lymphoma, splenic marginal zone lymphoma) NGS evaluation, FISH for <i>CCND2</i> or 3			

Proliferation index

- MCL is not graded, but elevated proliferation index is associated with adverse prognosis
 - Ki67 staining: ≥ 30% associated with decreased overall survival
 - # of mitoses per 15 high-powered fields (HPFs): >10
 - assessment of proliferation index should be performed in all cases of MCL

Hoster E et al. J Clin Oncol. 2016: 34(12):1386-13

MANTLE CELL LYMPHOMA

Blastoid and pleomorphic variants

- certain morphologies are associated with more aggressive behavior:
 - blastoid variant = cells resemble lymphoblasts; often ≥20-30 mitoses per 10 HPFs
 - pleomorphic variant = large cells with pleomorphic nuclei and often prominent nucleoli
- may arise *de novo* or as transformation from MCL with classical morphology

Blastoid and pleomorphic variants

- morphology can be deceiving, particularly *de novo* cases
- recommend cyclin D1 in routine work-up of DLBCL and B-cell neoplasms with immature cytologic features

MANTLE CELL LYMPHOMA

TP53

- numerous recurrent gene mutations (including ATM and TP53) and chromosomal gains and losses have been described in MCL
- TP53 gene aberrations (mutation or 17p deletion) in MCL → aggressive disease features such as blastoid/pleomorphic histology, high Ki-67, complex karyotype, high-risk MIPI (MCL International Prognostic Index) → predict poor outcomes

Jain P et al. J Clin Oncol. 2022;38(36):4302-4317. Sethi S et al. Front Oncol. 2021;11:739441.

To p53 IHC or not to p53 IHC

- Aukema et al *Blood* 2018: patients with high p53 expression by IHC (>50% positive lymphoma cells) had a shorter time to treatment failure and poor OS independent of both MIPI score and Ki-67 index
 - negative (0% positive lymphoma cells)
 - low (1%-10% positive lymphoma cells)
 - intermediate (10%-50% positive lymphoma cells)
 - high (>50% positive lymphoma cells)
- our clinicians have asked us to perform p53 IHC on mantle cell cases for prognostic information → affects management decisions, including re: transplant

Aukema SM et al. Blood. 2018;131(4):417-420.

Angelopoulou MK et al. Leukemia & Lymphoma. 2014;55:6, 1240-1250.

Challenges in diagnosis						
Nodal ma	rginal zone lymphoma					
CD20	+					
CD5	- (~15% +)					
CD10	-					
BCL6	-					
CD43	up to 50%					
BCL2	+					
CD23, CD21	negative in lesional cells but helpful to ID follicular dendritic cells					
Pla	asmacytoid cells					
MUM-1	subset +					
cytoplasmic light chain	restricted					

NODAL MARGINAL ZONE LYMPHOMA

Myeloid cell nuclear differentiation antigen (MNDA)

 Table 1
 MNDA expression analysis in extramedullary tissues involved by lymphoma

Diagnosis	Number MNDA+	Percent MNDA+		
FL, grade 1-2	3/69 ^a	4.3%		
FL, grade 3	3/41	7.3%		
DLBCL	2/61	3.3%		
NMZL	16/24	66.7%		
EMZL	27/44	61.4%		
SMZL	5/21	23.8%		
Splenic diffuse red pulp small B-cell lymphoma	1/1	100%		
CLL/SLL	4/31	12.9%		
MCL	9/140	6.4%		
LPL	2/8	25%%		

 myelomonocytic cells
 non-neoplastic B cells in spleen, in marginal zone distribution

Metcalf RA et al. Human Pathology. 2014;45, 1730–1736. Angelopoulou MK et al. Leukemia & Lymphoma. 2014;55:6, 1240-1250.

NODAL MARGINAL ZONE LYMPHOMA NMZL Challenges in diagnosis NOTCH signaling mutations NF-KB signaling mutations 50% 40% · majority of recurrent genetic KLF2 mutations aberrancies are non-specific • trisomy 3 PTPRD mutations trisomy 12 NOTCH 20% • trisomy 18 proliferati MLL2 utations 35 • NOTCH2 mutations • *NF- kB* signaling mutations TLR CAR CL10 MALT1 MYD88 mutations 0-10% • PTPRD mutations appear to be CARD11 mutations BCR 5-10% specific for nodal MZL (~20% cases) +3: 14% +12: 13% +18: 10% IGHV4-34 30% Spina V et al. Best Practice & Research Clinical Haematology. 2017;30:5e12

NODAL MARGINAL ZONE LYMPHOMA

Transformation

- transformation to DLBCL has been described in 15% of patients with NMZL at median 4.5 years from diagnosis
- caveat: morphologic distinction between NMZL and DLBCL can be challenging
 - NMZL can show an increased number of centroblasts, particularly in cases with follicular colonization
 - NMZL is not graded; higher proportion of largesized cells does not definitively correlate with outcome
 - WHO recommends reserving diagnosis of DLBCL for cases with sheets of centroblasts

van den Brand M et al. Hematologica. 2013;98(7):1003-1013

NODAL MARGINAL ZONE LYMPHOMA

Differential diagnosis

- 2° nodal involvement by EMZL or SMZL
 - exclusion requires careful clinical and radiologic correlation
 - large numbers of monocytoid cells and well-preserved reactive follicles favor nodal spread from an undetected EMZL

NODAL MARGINAL ZONE LYMPHOMA

Differential diagnosis

- lymphoplasmacytic lymphoma
 - similarities include IgM monoclonal gammopathy, absence of CD5/CD10 expression, plasmacytoid differentiation
 - MYD88 L265P mutations are found in >90% LPL cases but in only 0-10% of NMZL
- follicular lymphoma
 - NMZL with extensive follicular colonization can be difficult to distinguish from follicular lymphoma
 - in NMZL, the infiltrating NMZL cells will be BCL2+ whereas the residual follicular cells express BCL6, CD10 and stathmin but are negative for BCL2
- reactive conditions
 - marginal zone hyperplasia (reactive marginal zone cells are BCL2+ so this does not help distinguish)
 - hyperplasia of monocytoid B-cells (toxoplasmosis or other infections)

Often a diagnosis of exclusion given absence of defining immunophenotypic or genetic markers

Jaffe ES. Chp 21. Hematopathology 2nd ed. 2016.

HAIRY CELL LEUKEMIA	Hairy cell leukemia	
	CD20	+
Nodal and extranodal involvement	CD5	-
	CD10	-
 lymph node involvement considered 	CD23	-
uncommon	CD43	-/+
 often associated with advanced 	LEF1	-
disease and splenectomy	CD200	+
	FMC7	+
 extranodal involvement is rare 	cyclin D1	+ (weak)
 can occur at presentation or in 	SOX11	-
patients with longstanding disease	light chain	+
variable anatomic sites	TRAP	+
	CD11c	+ (bright)
• Tytic bone lesions	CD25	+
 central nervous system 	CD103	+
• skin	DBA.44	+
• breast	CD123	+
 salivary gland 	T-bet	+
• pleura	Annexin A1	+
Cortazar JM et al. Histopathology. 2017;71, 112–124.	CD1d	+

HAIRY CELL LEUKEMIA

IHC pitfalls

- cyclin D1+
 - weaker, less uniform than mantle cell lymphoma
 - not associated with t(11;14)
- SOX11-negative
 - earlier literature suggested HCL was SOX11+
 - this was using polyclonal SOX11 antibody
 - HCL does not express SOX11 when using a monoclonal antibody
- up to 25% express CD10
 - BCL6-negative
- rarely CD5+

Monoclonal SOX11 (C-terminal peptide):

Jasionowski TM et al. Am J Clin Pathol. 2003;120:228-235. Basso K et al. J Exp Med. 2004;199(1):59-68. Cortazar JM et al. Histopathology. 2017;71, 112-124. Bosch F et al. Br Haematol. 1995;91:1025-30. Miranda RN et al. Mod Pathol. 2000;13(12):1308-1314. Sherman MJ et al. Am J Clin Pathol. 2011;136:390-399. Dictor M et al. Haematologico. 2009;94:1563-1568. Nordström L et al. BMC Cancer. 2012;12:269.

SUMMARY

Transformation caveats

- expanded proliferation centers can be misinterpreted as Richter transformation
- HRS cells in CLL/SLL without mixed inflammatory background does not equal Richter transformation per WHO criteria, but should be reported
- necrosis is CLL/SLL does not always = transformation; consider HSV lymphadenitis
- blastoid or pleomorphic MCL, particularly *de novo*, can resemble large cell or immature process; perform cyclin D1 liberally in work-up of B-cell entities
- NMZL may have many centroblast-like cells, particularly in the setting of follicular colonization; diagnosis of DLBCL is reserved for sheets of centroblast-like or large-sized cells

SUMMARY

IHC pitfalls and helpful hits

- see tables in appendix for typical IHC profiles in small B-cell lymphomas, and for frequency of "aberrant" expression of CD5 and CD10 in B-cell neoplasms
- SOX11 is helpful for diagnosis of MCL but care is needed when choosing antibody clone
- cyclin D1 is not only positive in MCL but also plasma cell myeloma with t(11;14) which are often IgM+ and CD20+; HCL (weak); and proliferation centers of CLL/SLL
- p53 IHC is not a proven surrogate for *TP53* mutation or del(17p) status
- myeloid cell nuclear differentiation antigen (MNDA) is positive in approximately 60% of NMZL and EMZL but is also expressed in smaller subset of most other small B-cell lymphomas

IMMUNOHISTOCHEMISTRY (APPENDIX)

Table 14-7 Classic Immunophenotypic Profile of B-Chronic Lymphoproliferative Neoplasms

Disorder	Slg	CD20	CD22	CD23	CD25	CD5	FMC7	CD11c	CD10	CD79b	CD103	CD200	LEF1	Cyclin D1	SOX11
CLL/SLL	W	W	W	+	-	+	-/w	W	-	-/w	-	+ bright	+	-	-
PLL	+	+	+	-	-	V	V	-	-	+	-	-/+	ND	-	ND
MCL	+	+	+	-, w	-	+	+	-	-	+	-	-	-	+	+
FL	+	+	+	-	-	-	+	-	+	+	-	+ dim/ mod	-	-	-
SMZL	+	+	+	-	-	V	+	V	V	+	-	+ dim/ mod	ND	-	-
HCL	+	+	+	-	+	-	+	+	S	-	+	+ bright	ND	+S	-
LPL	+/Clg	+	+		-	-	-	-	-	+	-	+/- dim	-	-	-

References 1, 36, 40, 68, 71, and 199-203. Clg, cytoplasmic immunoglobulin; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic leukemia; FL, follicular lymphoma; HCL, hairy cell leukemia; LPL, lymphoplasmacytic; MCL, mantle cell lymphoma; ND, not done; PLL, prolymphocytic leukemia; +s, subset of cases positive; SMZL, splenic marginal zone lymphoma, lymphoma; v, variable expression; w, weakly expressed

Chabot-Richards D et al. Chp 14. Hematopathology 2nd ed. 2016.

Immunophenotype	Type of Mature B-Cell Lymphoma	Staining	Source, y
CD5+/CD10-	MCL	93-95	Dorfman and Shahsafaei, ⁶ 1997; Gualco et al, ⁷ 2010
	SLL/CLL	80-92	Kurec et al,4 1992; Geiler et al,5 1991
	LPL	9-43	Hunter et al, ²⁰ 2005; Morice et al, ²¹ 2009
	MZBCL		
	Splenic MZBCL	20	Gimeno et al, ²⁴ 2005; Matutes et al, ²⁵ 2008
	Nodal MZBCL	8.6	Jaso et al, ²² 2013
	MALT lymphoma	1	Jaso et al,23 2012
	De novo DLBCL NOS	10	Tagawa et al, ²⁷ 2005
CD10+/CD5-	BL	100	Dogan et al,37 2000
	FL (low grade)	80	Eshoa et al, ³¹ 2001
	DLBCL, NOS	10-40	Colomo et al, ⁴⁶ 2003; Berglund et al, ⁴⁷ 2005; Visco et al, ⁴⁸ 2012
	LICL	10-20	Jasionowski et al,43 2003; Gupta et al,44 2015
	FL (grade 3)	17	Eshoa et al, ³¹ 2001
	MCL	0-7	Akhter et al,45 2015
CD5-/CD10-	MZBCL		
	MALT lymphoma	>99	Jaso et al, ²³ 2012
	Nodal MZBCL	92	Jasoco et al, ²² 2013
	Splenic MZBCL	80	Gimeno et al, ²⁴ 2005; Matutes et al, ²⁵ 2008
	LPL	57-91	Hunter et al, ²⁰ 2005; Morice et al, ²¹ 2009
	HCL	80-90	Jasionowski et al,43 2003; Gupta et al,44 2015
	DLBCL, NOS	50-70	Tagawa et al, ²⁷ 2005; Colomo et al, ⁴⁶ 2003; Berglund et al, ⁴⁷ 2005; Visco et al, ⁴⁸ 2012
	FL (grade 3)	83	Eshoa et al, ³¹ 2001
	FL (low grade)	20	Eshoa et al, ³¹ 2001
	SLL/CLL	8-20	Kurec et al,⁴ 1992; Geiler et al,⁵ 1991