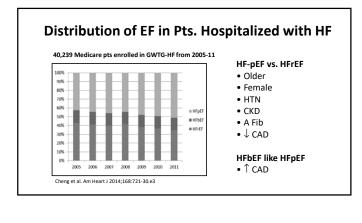
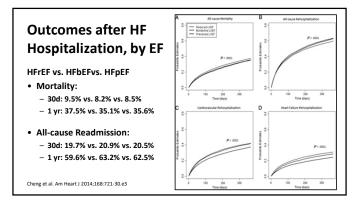
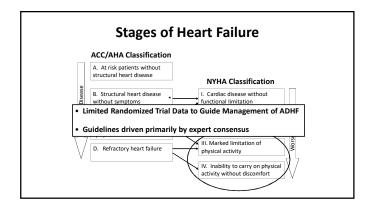
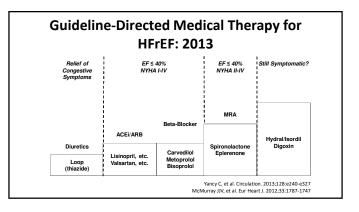
BRIGHAM HEALTH BRIGHAM AND WOMEN'S Department of Medicine

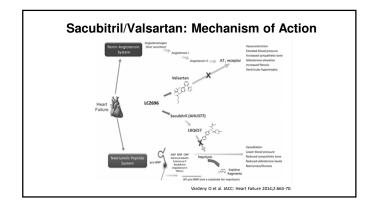


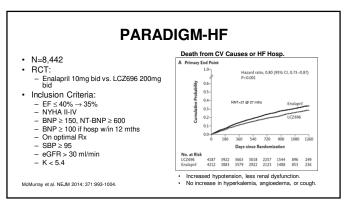

Recent Advances in Heart Failure

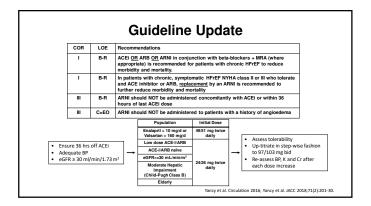

Anju Nohria, MD Advanced Heart Disease Section Brigham and Women's Hospital

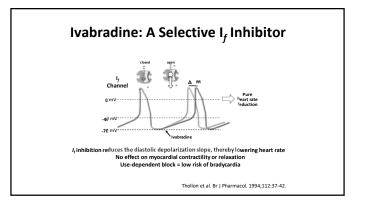

Disclosures

- Amgen research support
- Takeda Oncology consultant
- Astrazeneca consultant
- Boehringer Ingelheim consultant

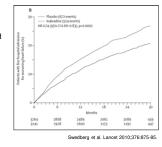


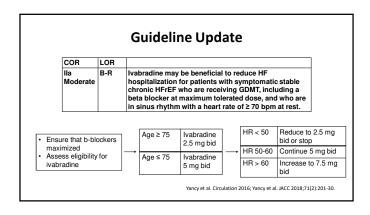

Heart Failure Case

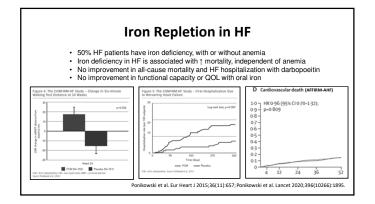

- 53 y.o. man presents for f/u after 2nd admission for ADHF
 Non-ischemic CMP (EF 25%,
- LVEDD 7.5 cm)
- PAF/VT w/ ICD therapies
 Metoprolol succinate 200 mg daily, losartan 50 mg daily, spironolactone 25 mg daily, digoxin 0.125 mg daily,
- spironolactone 25 mg daily, digoxin 0.125 mg daily, furosemide 80 mg bid, and apixaban 5 mg bid
- BP 100/50, HR 85
- JVP 10 cm water, min. HJR
- Clear lungs
- RRR. NI s1, s2. + Soft MR m
- No HSM
- No edema
- Na 130, K 4.6, BUN 26, Cr 1.6
- Hb 10, Fe 25, TIBC 150, ferritin 300


Question

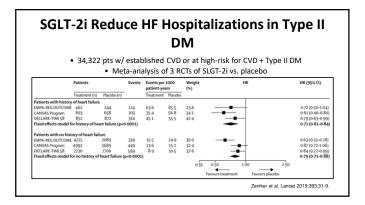
- What would be the next best step to lower his risk of HF hospitalization?
- A. Change metoprolol to carvedilol
- B. Change losartan to sacubitril-valsartan
- C. Add ivabradine
- D. Give IV iron infusions

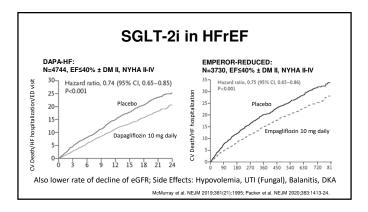


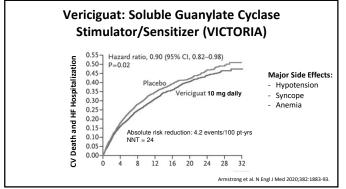


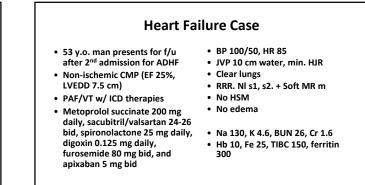

SHIFT: Ivabradine (I_f inhibitor in SA node)

- N=6,558
- EF \leq 35%, NYHA II-IV
- Resting HR ≥ 70 bpm on max tolerated BB
- Ivabradine: 5 bid \rightarrow 7.5 bid
- Average HR: 64 vs. 75 bpm @1 yrGreater benefit w/ greater reduction
- in HR

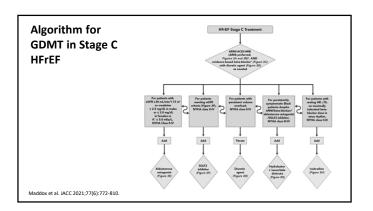

 Side effects
- Sude effects
 Symptomatic bradycardia: 5 vs 1%
- Phosphenes: 3 vs 1%







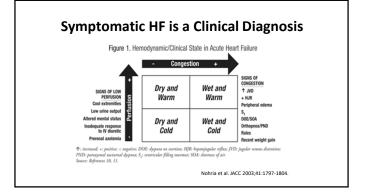
Guideline Update						
COR	LOE	Recommendations				
IIb	B-R	In patients with NYHA class II and III HF and iron				
See Online Data Supplement D.		deficiency (ferrifin <100 ng/mL or 100 to 300 ng/mL if transferrin saturation is <20%), intravenous iron replacement might be reasonable to improve functional status and QOL(173, 174).				
III: No Benefit	B-R	In patients with HF and anemia, erythropoietin- stimulating agents should not be used to improve markidity and montality (170)				
See Online Data Supplement D.		morbidity and mortality (176).				



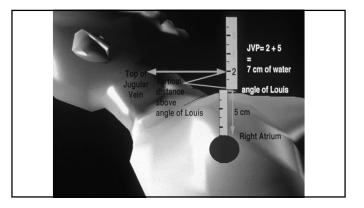
Question

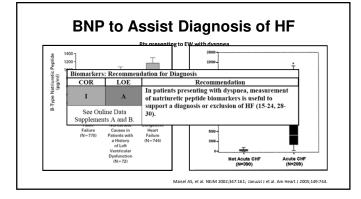
- What would be the next best step in his management?
- A. Change metoprolol to carvedilol
- B. Add dapagliflozin
- C. Add ivabradine
- D. Give IV iron infusions

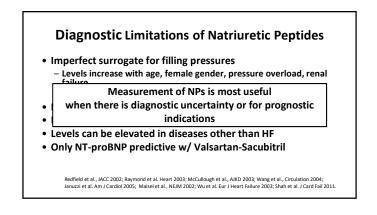
Heart Failure Case


- He presents 3 mths later w/ dyspnea w/ minimal exertion and 10 lb weight gain despite doubling of diuretic dose
- Metoprolol succinate 200 mg daily, sacubitril/valsartan 24-26 bid, spironolactone 25 mg daily, dapagliflozin 10 mg daily, digoxin 0.125 mg daily, furosemide 160 mg bid, and apixaban 5 mg bid
- BP 90/70, HR 90
- JVD to angle of jaw
- Clear lungs
- RRR. NI s1, s2. + s3, MR, TR
 Liver edge 2 cm below costal
- margin
 Trace edema, lukewarm to
- touch, 2+ distal pulses
- Na 128, K 4.6, BUN 30, Cr 1.8

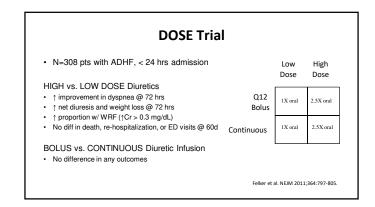
Treatment Goals in ADHF

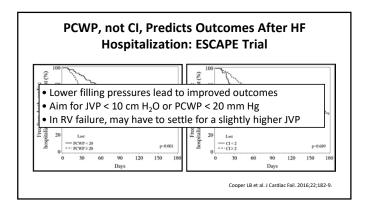

- Address precipitating factors
- Optimize volume status and perfusion
- Optimize oral heart failure regimen
- Manage Related Risks (e.g. SCD, VTE)
- Patient Education
- Initiate Longitudinal Disease Management


Precipitating Factors


- Acute coronary syndromes/coronary ischemia
- Uncontrolled hypertension
- Atrial or ventricular arrhythmias
- Acute Infection (e.g. URI, pneumonia, UTI)
- Medications (e.g. NSAIDs, steroids, TZDs, L-type CCBs)
- Nonadherence (eg. sodium and fluid restriction, medications)
- Excessive alcohol intake or illicit drug use
- Hypo/hyperthyroidism
- Other cardiac dz (acute endocarditis, acute dissection, acute myopericarditis)

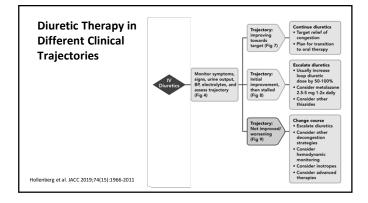
acy of Physical Find Pres	ings for Ele ssure	evated L\
Finding	Sensitivity	Specificity
Orthopnea (≥2 pillows)	85%	24%
Rales (≥1/3 lungs fields)	15 %	89%
S3	63%	34%
Edema (>1+)	41%	67%
Elevated JVP (>10 cm)	67%	72%
Sensitivity and specificity for predicti	ng PCWP > 22 mm Hg	
	Drazner M et a	I. Circ Heart Fail 2008





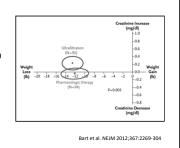
Diuresis in ADHF

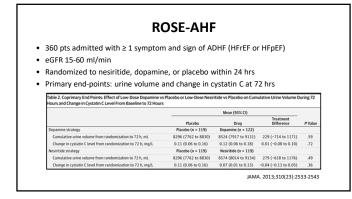
- Loop diuretics: IV bolus or continuous infusion
 - Furosemide, torsemide, bumetanide 80 mg po furosemide = 40 mg IV furosemide = 20 mg po/IV torsemide = 1 mg po/IV bumetanide
- Initiate diuretics rapidly at dose ≥ oral regimen
 - i.e. if home dose 80 mg p.o. furosemide, give 80 mg I.V. furosemide - Give at frequent intervals
 - At least b.i.d. or t.i.d.

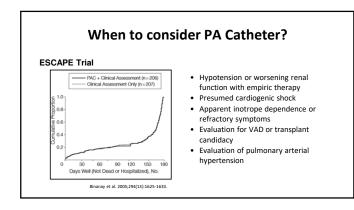

 - Give higher doses in pts with elevated BUN
- *Aldosterone antagonists are weak diuretics and used mostly for K-sparing and neurohormonal effects

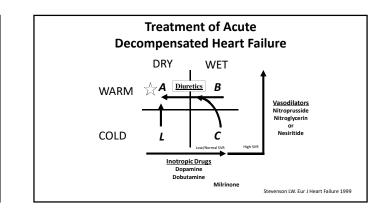
Hospital Course

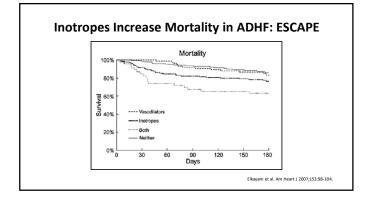
- Day 1:
 - 200 mg IV furosemide b.i.d.
 - Net urine output 1000 ml
- Day 2:
 - 200 mg IV furosemide b.i.d.
 - Net urine output 300 ml
 - BUN/Cr 30/1.8 → 40/2.2

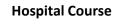

Hospital Course


• Day 3:


- IV furosemide drip @ 20 mg/h + metolazone 5 mg x 1
- Net urine output 1000 ml
- BUN 50, Cr 3.1
- Transient drop in SBP to 75 mm Hg
- Day 4:
 - Weaned off metoprolol w/out improvement
- Day 5:
 - Stopped valsartan-sacubitril w/out improvement

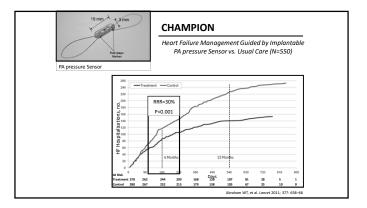

CARESS: UF vs. IV Diuretics


- N=188
- HFrEF or HFpEF
- ≥ 2 signs of ADHF
- ↑ SCr ≥ 0.3, 12 wk prior to or 10 d after admit
- No IV vasoactive meds
- SCr < 3.5 mg/dL
- 1° End-pt: ∆ in weight and Cr @ 96 hr

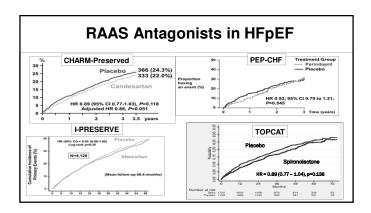


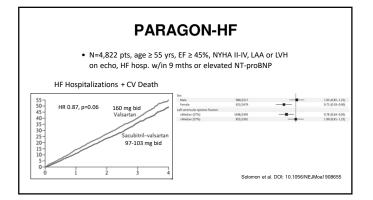
- PA catheter: RA 16, PCW 34, CI 1.5, SVR 1800
- Did not tolerate IV nitroprusside due to hypotension
- Started on IV milrinone with improved urine output and renal function
- Attempts to wean milrinone unsuccessful
- Plans to discharge on home IV milrinone

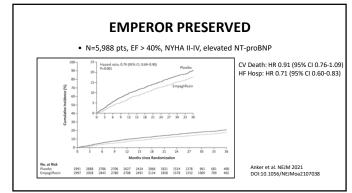
High Risk Features In Hospitalized Pts


At Admission	During Hospitalization	At Discharge
Advanced age	Low spot urine after 1st IV diuretic	Residual Congestion
Co-morbidities	Diuretic resistance	< 30% reduction in NP levels from
Frailty	Discontinuation of	admission
Cachexia	ACEi/ARB/ARNI for hypotension	Need for IV inotropes
Number of prior hospitalizations	or renal dysfunction	Low SBP
Non-adherence	Resuscitation or intubation	High BUN
RV dysfunction	Need for IV inotropes	Hyponatremia
NYHA Class IV symptoms	Troponin Elevation	Discharge without
Low SBP		ACE/ARB/ARNI or beta-blockers
Renal Dysfunction		
Hyponatremia		
Higher NP levels		

Hollenberg et al. JACC 2019;74(15):1966-2011


Hospital Discharge


- Ensure adequate decongestion (JVP < 10 cm H_2O)
- Institute evidence-supported therapies prior to d/c
- Careful discharge planning, including written instructions for
 - Discharge medicationsDiet (2 gm Na and 2 L fluid restriction)
 - Weight monitoring
 - What to do if symptoms worsen
 - Follow-up appointment with 1 week of discharge
- Disease Management Program


	Outco	om	es		
Intervention	Outcome at 3-6 Months	N Studies	N Subjects	Finding	Relative Risk (95% CI)
Home-visiting	All-cause readmission	9	1563	8	0.75 (0.68 to 0.86)
programs	HF-specific readmission	1	282	8	0.51 (0.31 to 0.82)
1.0	Composite endpoint**	4	824	- 8	0.78 (0.65 to 0.94)
	Mortality	8	1693	8	0.77 (0.60 to 0.997)
	Number of hospital days at readmission	3	403	0	WMD, -1.17 (-2.44 to 0.09
Structured	All-cause readmission	8	2166	~~~	0.92 (0.77 to 1.10)
telephone support	HF-specific readmission	7	1790	0	0.74 (0.61 to 0.90)
	Composite endpoint	3	977	00	0.81 (0.58 to 1.12)
	Mortality	7	2011	8	0.74 (0.56 to 0.97)
	Number of hospital days at readmission	5	1189	- 0	WMD, -0.95 (-2.43 to 0.53
Telemonitoring	All-cause readmission	3	434	00	1.11 (0.87 to 1.42)
	HF-specific readmission	1	182	0	1.70 (0.82 to 3.51)
	Mortality	3	564	00	0.93 (0.25 to 3.48)
Multidisciplinary-	All-cause readmission	2	336	-0	0.70 (0.55 to 0.89)
HF clinic	HF-specific readmission	1	106		0.70 (0.29 to 1.70)
	Composite endpoint	2	306	00	0.80 (0.43 to 1.01)
	Mortality	3	536	-0-	0.56 (0.34 to 0.92)
Nurse-led	All-cause readmission	2	264	00	0.88 (0.57 to 1.37)
HF clinic	HF-specific readmission	1	1.58		0.95 (0.68 to 1.32)
	Composite endpoint	1	106		0.66 (0.43 to 1.01)
	Mortality	2	264	00	0.59 (0.12 to 3.03)
Primarily	All-cause readmission	1	200		1.14 (0.84 to 1.54)
educational	HF-specific readmission	1	223		0.53 (0.31 to 0.90)
interventions	Composite endpoint	2	423	00	0.92 (0.58 to 1.47)
	Mortality	2	423	00	1.20 (0.52 to 2.76)

COR	LOE	Recommendation				
Ι	в	SBP and DBP should be controlled according to guidelines				
Т	С	Diuretics for relief of symptoms, volume overload				
Ι	C-LD	Persistent HTN after diuresis? Rx to SBP < 130				
lla	с	Coronary revascularization if evidence of significant CAD and symptoms/ischemia despite GDMT				
lla	С	Management of AF according to published guidelines				
lla	С	Beta-blockers, ACE-I, ARBs to Rx HTN				
llb	B-R	Spironolactone to reduce HF hospitalization if EF>45%, GFR>30, creatinine<2.5, and K+<5.0				
llb	В	ARBs to reduce HF hospitalization				
III	B-R	PDE5i and nitrates are ineffective for QOL, physical activity				

Summary

- Optimize GDMT to improve outcomes, including consideration of ARNI and SGLT-2i
- ADHF is a clinical diagnosis, but BNP can be useful when there is diagnostic uncertainty
- Treatment of HF should be targeted at optimization of volume status
- Patients should be diuresed to JVP < 10 cm $\rm H_2O$ when possible and routine use of inotropes should be avoided
- Initiate lifesaving therapies prior to hospital discharge and coordinate longitudinal follow-up
- Consider ivabradine and IV iron to reduce HF hospitalization
- Patients with refractory/recurrent symptoms that are resistant to standard therapy or those with high risk features should be referred to HF specialist
- Therapy for HFpEF remains limited but SGLT-2i reduce hospitalizations