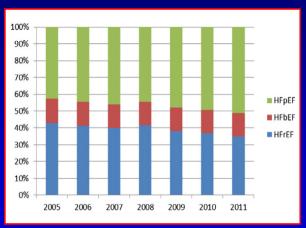




#### **Recent Advances in Heart Failure**


Anju Nohria, MD
Advanced Heart Disease Section
Brigham and Women's Hospital

#### **Disclosures**

- Amgen research support
- Takeda Oncology consultant
- Astrazeneca consultant
- Boehringer Ingelheim consultant

## Distribution of EF in Pts. Hospitalized with HF

40,239 Medicare pts enrolled in GWTG-HF from 2005-11

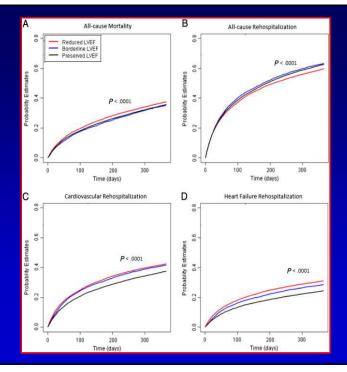


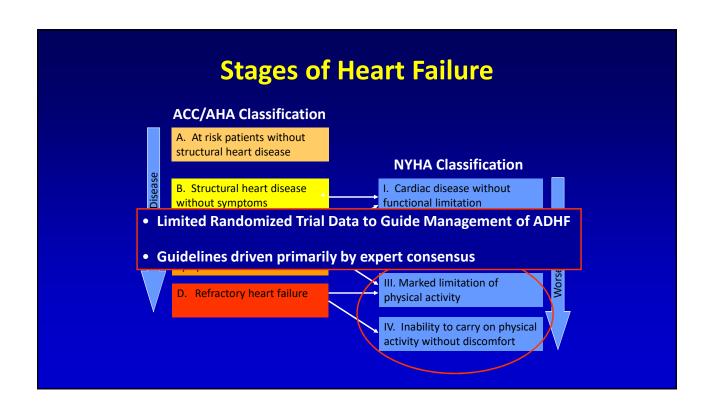
Cheng et al. Am Heart J 2014;168:721-30.e3

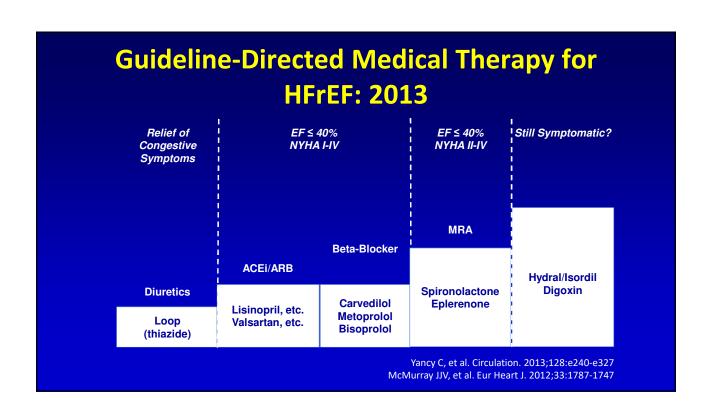
#### **HF-pEF vs. HFrEF**

- Older
- Female
- HTN
- CKD
- A Fib
- ↓ CAD

#### **HFbEF like HFpEF**


• ↑ CAD


# Outcomes after HF Hospitalization, by EF


#### **HFrEF vs. HFbEFvs. HFpEF**

- Mortality:
  - 30d: 9.5% vs. 8.2% vs. 8.5%
  - 1 yr: 37.5% vs. 35.1% vs. 35.6%
- All-cause Readmission:
  - 30d: 19.7% vs. 20.9% vs. 20.5%
  - 1 yr: 59.6% vs. 63.2% vs. 62.5%

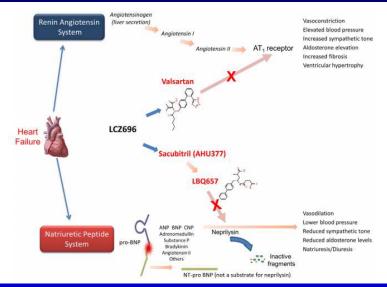
Cheng et al. Am Heart J 2014;168:721-30.e3







#### **Heart Failure Case**

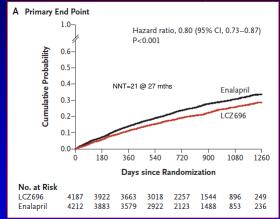

- 53 y.o. man presents for f/u after 2<sup>nd</sup> admission for ADHF
- Non-ischemic CMP (EF 25%, LVEDD 7.5 cm)
- PAF/VT w/ ICD therapies
- Metoprolol succinate 200 mg daily, losartan 50 mg daily, spironolactone 25 mg daily, digoxin 0.125 mg daily, furosemide 80 mg bid, and apixaban 5 mg bid

- BP 100/50, HR 85
- JVP 10 cm water, min. HJR
- Clear lungs
- RRR. NI s1, s2. + Soft MR m
- No HSM
- No edema
- Na 130, K 4.6, BUN 26, Cr 1.6
- Hb 10, Fe 25, TIBC 150, ferritin 300

#### Question

- What would be the next best step to lower his risk of HF hospitalization?
- A. Change metoprolol to carvedilol
- B. Change losartan to sacubitril-valsartan
- C. Add ivabradine
- D. Give IV iron infusions

#### Sacubitril/Valsartan: Mechanism of Action




Vardeny O et al. JACC: Heart Failure 2014;2:663-70.

#### **PARADIGM-HF**

- N=8,442
- RCT:
  - Enalapril 10mg bid vs. LCZ696 200mg
- Inclusion Criteria:
  - EF  $\leq 40\% \rightarrow 35\%$
  - NYHA II-IV
  - BNP ≥ 150, NT-BNP ≥ 600
  - BNP ≥ 100 if hosp w/in 12 mths
  - On optimal Rx
  - SBP ≥ 95
  - eGFR > 30 ml/min
  - K < 5.4

Death from CV Causes or HF Hosp.



- · Increased hypotension, less renal dysfunction.
- No increase in hyperkalemia, angioedema, or cough.

McMurray et al. NEJM 2014; 371:993-1004.

## **Guideline Update**

| COR | LOE  | Recommendations                                                                                                                                                                                |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | B-R  | ACEI <u>OR</u> ARB <u>OR</u> ARNI in conjunction with beta-blockers + MRA (where appropriate) is recommended for patients with chronic HFrEF to reduce morbidity and mortality.                |
| 1   | B-R  | In patients with chronic, symptomatic HFrEF NYHA class II or III who tolerate and ACE inhibitor or ARB, <u>replacement</u> by an ARNI is recommended to further reduce morbidity and mortality |
| III | B-R  | ARNI should NOT be administered concomitantly with ACEi or within 36 hours of last ACEi dose                                                                                                   |
| III | C=EO | ARNI should NOT be administered to patients with a history of angioedema                                                                                                                       |

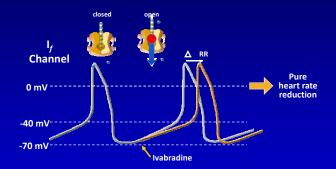
- Ensure 36 hrs off ACEi
- Adequate BP
- eGFR ≥ 30 ml/min/1.73 m<sup>2</sup>

Population Initial Dose

Enalapril > 10 mg/d or Valsartan > 160 mg/d

Low dose ACE-I/ARB

ACE-I/ARB naïve
eGFR<=30 mL/min/m²

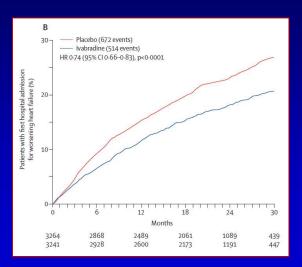

Moderate Hepatic Impairment (Child-Pugh Class B)

Elderly

- Assess tolerability
- Up-titrate in step-wise fashion to 97/103 mg bid
- Re-assess BP, K and Cr after each dose increase

Yancy et al. Circulation 2016; Yancy et al. JACC 2018;71(2):201-30.

# Ivabradine: A Selective I<sub>f</sub> Inhibitor




I<sub>f</sub> inhibition reduces the diastolic depolarization slope, thereby lowering heart rate No effect on myocardial contractility or relaxation Use-dependent block = low risk of bradycardia

Thollon et al. Br J Pharmacol. 1994;112:37-42.

# SHIFT: Ivabradine ( $I_f$ inhibitor in SA node)

- N=6,558
- EF ≤ 35%, NYHA II-IV
- Resting HR ≥ 70 bpm on max tolerated BB
- Ivabradine: 5 bid → 7.5 bid
- Average HR: 64 vs. 75 bpm @1 yr
- Greater benefit w/ greater reduction in HR
- Side effects
  - Symptomatic bradycardia: 5 vs 1%
  - Phosphenes: 3 vs 1%

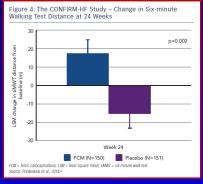


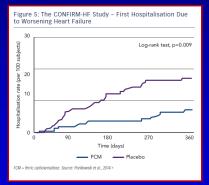
Swedberg et al. Lancet 2010;376:875-85.

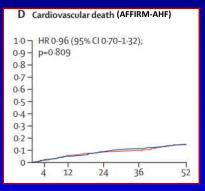
## **Guideline Update**

| COR      | LOR |                                                                                                            |
|----------|-----|------------------------------------------------------------------------------------------------------------|
| lla      | B-R | Ivabradine may be beneficial to reduce HF                                                                  |
| Moderate |     | hospitalization for patients with symptomatic stable chronic HFrEF who are receiving GDMT, including a     |
|          |     | beta blocker at maximum tolerated dose, and who are in sinus rhythm with a heart rate of ≥ 70 bpm at rest. |

- Ensure that b-blockers maximized
- Assess eligibility for ivabradine


| Age ≥ 75 | Ivabradine<br>2.5 mg bid |
|----------|--------------------------|
| Age ≤ 75 | Ivabradine<br>5 mg bid   |


|   | HR < 50  | Reduce to 2.5 mg bid or stop |
|---|----------|------------------------------|
| + | HR 50-60 | Continue 5 mg bid            |
|   | HR > 60  | Increase to 7.5 mg bid       |


Yancy et al. Circulation 2016; Yancy et al. JACC 2018;71(2):201-30.

## **Iron Repletion in HF**

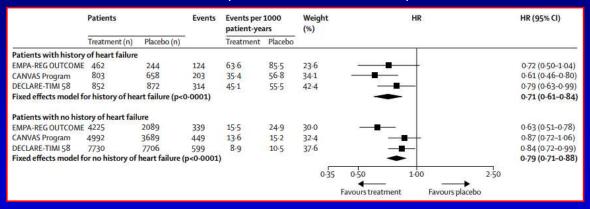
- 50% HF patients have iron deficiency, with or without anemia
- · Iron deficiency in HF is associated with ↑ mortality, independent of anemia
- · No improvement in all-cause mortality and HF hospitalization with darbopoeitin
- No improvement in functional capacity or QOL with oral iron







Ponikowski et al. Eur Heart J 2015;36(11):657; Ponikowski et al. Lancet 2020;396(10266):1895.

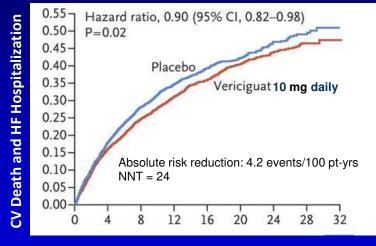

# **Guideline Update**

| Recommendations for Anemia |     |                                                                                                                                                                                          |  |  |  |
|----------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| COR LOE                    |     | Recommendations                                                                                                                                                                          |  |  |  |
| IIb                        | B-R | In patients with NYHA class II and III HF and iron                                                                                                                                       |  |  |  |
| See Onli<br>Suppler        | 200 | deficiency (ferritin <100 ng/mL or 100 to 300 ng/mL if transferrin saturation is <20%), intravenous iron replacement might be reasonable to improve functional status and QoL(173, 174). |  |  |  |
| III: No<br>Benefit B-R     |     | In patients with HF and anemia, erythropoietin-<br>stimulating agents should not be used to improve                                                                                      |  |  |  |
| See Onli<br>Suppler        |     | morbidity and mortality (176).                                                                                                                                                           |  |  |  |

Yancy et al. Circulation 2017. DOI:10.1161/CIR0000000000000509

# SGLT-2i Reduce HF Hospitalizations in Type II DM

34,322 pts w/ established CVD or at high-risk for CVD + Type II DM
 Meta-analysis of 3 RCTs of SLGT-2i vs. placebo




Zeniker et al. Lancet 2019;393:31-9.

#### **SGLT-2i in HFrEF DAPA-HF: EMPEROR-REDUCED:** N=4744, EF≤40% ± DM II, NYHA II-IV N=3730, EF≤40% ± DM II, NYHA II-IV 30-Death/HF hospitalization/ED visit Hazard ratio, 0.75 (95% CI, 0.65-0.86) Hazard ratio, 0.74 (95% CI, 0.65-0.85) P<0.001 CV Death/HF hospitalization 30-25 Placebo 25-Placebo 20-20-15-15-Empagliflozin 10 mg daily 10-Dapagliflozin 10 mg daily 10-5-0 270 450 540 630 720 81 360 Also lower rate of decline of eGFR; Side Effects: Hypovolemia, UTI (Fungal), Balanitis, DKA

McMurray et al. NEJM 2019;381(21):1995; Packer et al. NEJM 2020;383:1413-24.

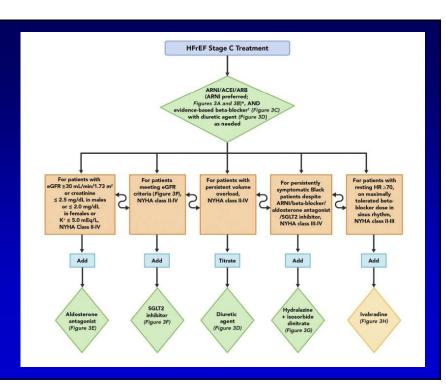
# Vericiguat: Soluble Guanylate Cyclase Stimulator/Sensitizer (VICTORIA)



#### **Major Side Effects:**

- Hypotension
- Syncope
- Anemia

Armstrong et al. N Engl J Med 2020;382:1883-93.


#### **Heart Failure Case**

- 53 y.o. man presents for f/u after 2<sup>nd</sup> admission for ADHF
- Non-ischemic CMP (EF 25%, LVEDD 7.5 cm)
- PAF/VT w/ ICD therapies
- Metoprolol succinate 200 mg daily, sacubitril/valsartan 24-26 bid, spironolactone 25 mg daily, digoxin 0.125 mg daily, furosemide 80 mg bid, and apixaban 5 mg bid
- BP 100/50, HR 85
- JVP 10 cm water, min. HJR
- Clear lungs
- RRR. NI s1, s2. + Soft MR m
- No HSM
- No edema
- Na 130, K 4.6, BUN 26, Cr 1.6
- Hb 10, Fe 25, TIBC 150, ferritin 300

## Question

- What would be the next best step in his management?
- A. Change metoprolol to carvedilol
- B. Add dapagliflozin
- C. Add ivabradine
- D. Give IV iron infusions

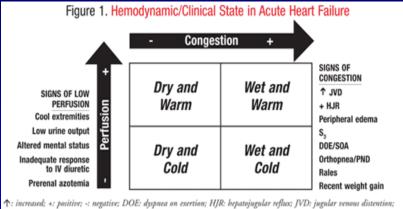
# Algorithm for GDMT in Stage C HFrEF



Maddox et al. JACC 2021;77(6):772-810.

#### **Heart Failure Case**

- He presents 3 mths later w/ dyspnea w/ minimal exertion and 10 lb weight gain despite doubling of diuretic dose
- Metoprolol succinate 200 mg daily, sacubitril/valsartan 24-26 bid, spironolactone 25 mg daily, dapagliflozin 10 mg daily, digoxin 0.125 mg daily, furosemide 160 mg bid, and apixaban 5 mg bid
- BP 90/70, HR 90
- JVD to angle of jaw
- Clear lungs
- RRR. NI s1, s2. + s3, MR, TR
- Liver edge 2 cm below costal margin
- Trace edema, lukewarm to touch, 2+ distal pulses
- Na 128, K 4.6, BUN 30, Cr 1.8


#### **Treatment Goals in ADHF**

- Address precipitating factors
- Optimize volume status and perfusion
- Optimize oral heart failure regimen
- Manage Related Risks (e.g. SCD, VTE)
- Patient Education
- Initiate Longitudinal Disease Management

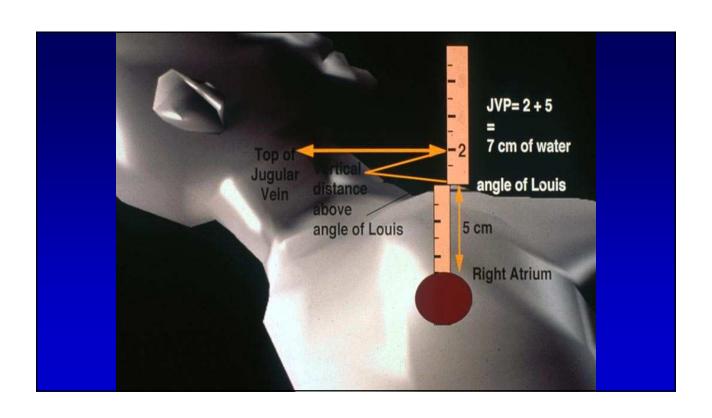
#### **Precipitating Factors**

- Acute coronary syndromes/coronary ischemia
- Uncontrolled hypertension
- Atrial or ventricular arrhythmias
- Acute Infection (e.g. URI, pneumonia, UTI)
- Medications (e.g. NSAIDs, steroids, TZDs, L-type CCBs)
- Nonadherence (eg. sodium and fluid restriction, medications)
- Excessive alcohol intake or illicit drug use
- Hypo/hyperthyroidism
- Other cardiac dz (acute endocarditis, acute dissection, acute myopericarditis)

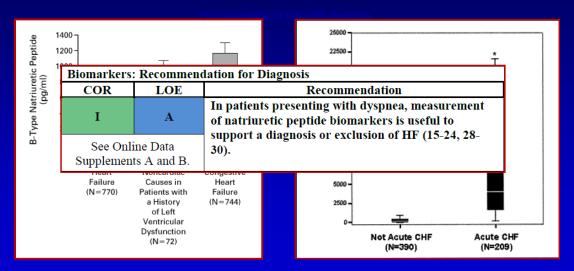
## **Symptomatic HF is a Clinical Diagnosis**



↑: increased; +: positive; -: negative; DOE: dyspnea on exertion; HJR: hepatojugular reflux; JVD: jugular venous distention, PND: paroxysmal nocturnal dyspnea; S<sub>3</sub>: ventricular filling murmur; SOA: shortness of air.
Source: References 10, 11.


Nohria et al. JACC 2003;41:1797-1804.

# Accuracy of Physical Findings for Elevated LV Filling Pressure


| Finding                   | Sensitivity | Specificity |  |
|---------------------------|-------------|-------------|--|
| Orthopnea (≥2 pillows)    | 85%         | 24%         |  |
| Rales (≥1/3 lungs fields) | 15 %        | 89%         |  |
| S3                        | 63%         | 34%         |  |
| Edema (>1+)               | 41%         | 67%         |  |
| Elevated JVP (>10 cm)     | 67%         | 72%         |  |

Sensitivity and specificity for predicting PCWP > 22 mm Hg

Drazner M et al. Circ Heart Fail 2008;1:170







Maisel AS, et al. NEJM 2002;347:161; Januzzi J et al. Am Heart J 2005;149:744.

#### **Diagnostic Limitations of Natriuretic Peptides**

- Imperfect surrogate for filling pressures
  - Levels increase with age, female gender, pressure overload, renal

Measurement of NPs is most useful

- when there is diagnostic uncertainty or for prognostic
- indications
- Levels can be elevated in diseases other than HF
- Only NT-proBNP predictive w/ Valsartan-Sacubitril

Redfield et al., JACC 2002; Raymond et al. Heart 2003; McCullough et al., AJKD 2003; Wang et al., Circulation 2004; Januzzi et al. Am J Cardiol 2005; Maisel et al., NEJM 2002; Wu et al. Eur J Heart Failure 2003; Shah et al. J Card Fail 2011.

#### **Diuresis in ADHF**

- Loop diuretics: IV bolus or continuous infusion
  - Furosemide, torsemide, bumetanide
    - 80 mg po furosemide = 40mg IV furosemide = 20 mg po/IV torsemide = 1 mg po/IV bumetanide
- Initiate diuretics rapidly at dose ≥ oral regimen
  - i.e. if home dose 80 mg p.o. furosemide, give 80 mg l.V. furosemide
  - Give at frequent intervals
    - At least b.i.d. or t.i.d.
  - Give higher doses in pts with elevated BUN
- \*Aldosterone antagonists are weak diuretics and used mostly for K-sparing and neurohormonal effects

#### **DOSE Trial**

N=308 pts with ADHF, < 24 hrs admission</li>

#### HIGH vs. LOW DOSE Diuretics

- ↑ improvement in dyspnea @ 72 hrs
- ↑ net diuresis and weight loss @ 72 hrs
- † proportion w/ WRF (†Cr > 0.3 mg/dL)
- No diff in death, re-hospitalization, or ED visits @ 60d

Ontinuous

Dose

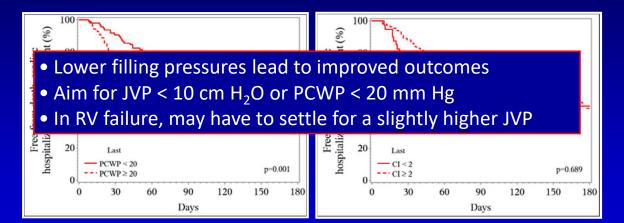
Dose

1X oral

2.5X oral

2.5X oral

Low


High

#### BOLUS vs. CONTINUOUS Diuretic Infusion

• No difference in any outcomes

Felker et al. NEJM 2011;364:797-805.

# PCWP, not CI, Predicts Outcomes After HF Hospitalization: ESCAPE Trial



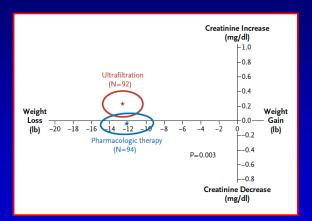
Cooper LB et al. J Cardiac Fail. 2016;22;182-9.

#### **Hospital Course**

- Day 1:
  - 200 mg IV furosemide b.i.d.
  - Net urine output 1000 ml
- Day 2:
  - 200 mg IV furosemide b.i.d.
  - Net urine output 300 ml
  - BUN/Cr 30/1.8 → 40/2.2

#### Diuretic Therapy in Different Clinical Trajectories

Hollenberg et al. JACC 2019;74(15):1966-2011




## **Hospital Course**

- Day 3:
  - IV furosemide drip @ 20 mg/h + metolazone 5 mg x 1
  - Net urine output 1000 ml
  - BUN 50, Cr 3.1
  - Transient drop in SBP to 75 mm Hg
- Day 4:
  - Weaned off metoprolol w/out improvement
- Day 5:
  - Stopped valsartan-sacubitril w/out improvement

#### **CARESS: UF vs. IV Diuretics**

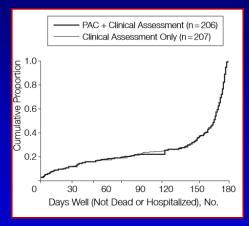
- N=188
- HFrEF or HFpEF
- ≥ 2 signs of ADHF
- ↑ SCr ≥ 0.3, 12 wk prior to or 10 d after admit
- No IV vasoactive meds
- SCr < 3.5 mg/dL
- 1º End-pt: Δ in weight and Cr @ 96 hr



Bart et al. NEJM 2012;367:2269-304

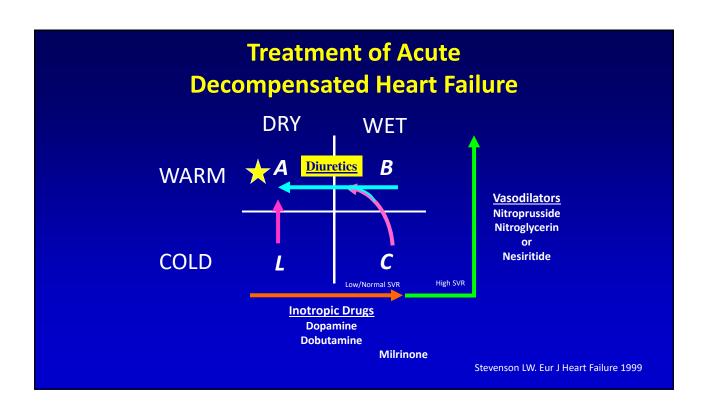
#### **ROSE-AHF**

- 360 pts admitted with ≥ 1 symptom and sign of ADHF (HFrEF or HFpEF)
- eGFR 15-60 ml/min
- Randomized to nesiritide, dopamine, or placebo within 24 hrs
- Primary end-points: urine volume and change in cystatin C at 72 hrs

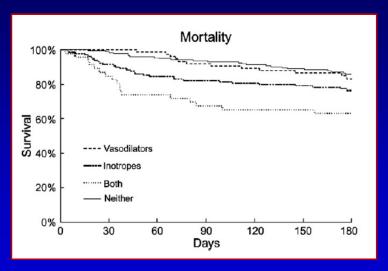

Table 2. Coprimary End Points: Effect of Low-Dose Dopamine vs Placebo or Low-Dose Nesiritide vs Placebo on Cumulative Urine Volume During 72 Hours and Change in Cystatin C Level From Baseline to 72 Hours

|                                                             |                     | Mean (95% CI)        |                         |         |
|-------------------------------------------------------------|---------------------|----------------------|-------------------------|---------|
|                                                             | Placebo             | Drug                 | Treatment<br>Difference | P Value |
| Dopamine strategy                                           | Placebo (n = 119)   | Dopamine (n = 122)   |                         |         |
| Cumulative urine volume from randomization to 72 h, mL      | 8296 (7762 to 8830) | 8524 (7917 to 9131)  | 229 (-714 to 1171)      | .59     |
| Change in cystatin C level from randomization to 72 h, mg/L | 0.11 (0.06 to 0.16) | 0.12 (0.06 to 0.18)  | 0.01 (-0.08 to 0.10)    | .72     |
| Nesiritide strategy                                         | Placebo (n = 119)   | Nesiritide (n = 119) |                         |         |
| Cumulative urine volume from randomization to 72 h, mL      | 8296 (7762 to 8830) | 8574 (8014 to 9134)  | 279 (-618 to 1176)      | .49     |
| Change in cystatin C level from randomization to 72 h, mg/L | 0.11 (0.06 to 0.16) | 0.07 (0.01 to 0.13)  | -0.04 (-0.13 to 0.05)   | .36     |

JAMA. 2013;310(23):2533-2543


#### When to consider PA Catheter?

#### **ESCAPE Trial**




Binanay et al. 2005;294(13):1625-1633.

- Hypotension or worsening renal function with empiric therapy
- Presumed cardiogenic shock
- Apparent inotrope dependence or refractory symptoms
- Evaluation for VAD or transplant candidacy
- Evaluation of pulmonary arterial hypertension



#### **Inotropes Increase Mortality in ADHF: ESCAPE**



Elkayam et al. Am Heart J 2007;153:98-104.

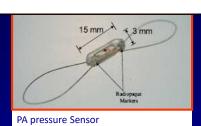
## **Hospital Course**

- PA catheter: RA 16, PCW 34, CI 1.5, SVR 1800
- Did not tolerate IV nitroprusside due to hypotension
- Started on IV milrinone with improved urine output and renal function
- Attempts to wean milrinone unsuccessful
- Plans to discharge on home IV milrinone

## **High Risk Features In Hospitalized Pts**

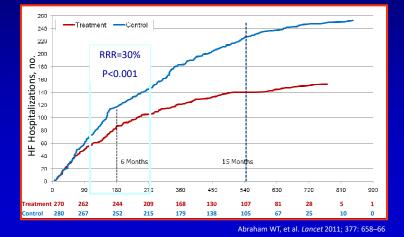
| At Admission                                                                                                                                                                              | During Hospitalization                                                                                                                                                                                                   | At Discharge                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advanced age Co-morbidities Frailty Cachexia Number of prior hospitalizations Non-adherence RV dysfunction NYHA Class IV symptoms Low SBP Renal Dysfunction Hyponatremia Higher NP levels | Low spot urine after 1st IV diuretic<br>Diuretic resistance<br>Discontinuation of<br>ACEi/ARB/ARNI for hypotension<br>or renal dysfunction<br>Resuscitation or intubation<br>Need for IV inotropes<br>Troponin Elevation | Residual Congestion < 30% reduction in NP levels from admission Need for IV inotropes Low SBP High BUN Hyponatremia Discharge without ACE/ARB/ARNI or beta-blockers |

- Discuss prognosis/goals of care
- Consider referring to HF specialist for consideration of advanced therapies


Hollenberg et al. JACC 2019;74(15):1966-2011

## **Hospital Discharge**

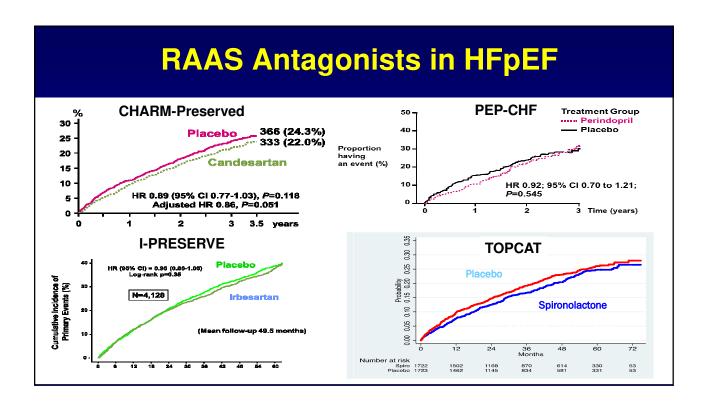
- Ensure adequate decongestion (JVP < 10 cm H<sub>2</sub>O)
- Institute evidence-supported therapies prior to d/c
- Careful discharge planning, including written instructions for
  - Discharge medications
  - Diet (2 gm Na and 2 L fluid restriction)
  - Weight monitoring
  - What to do if symptoms worsen
  - Follow-up appointment with 1 week of discharge
- Disease Management Program


# Impact of Various Transitional Care Interventions on HF Outcomes

|                    | Out on the Charles                     | N       | N      | Eta dia a | Deletion Biologogo (CI)    |
|--------------------|----------------------------------------|---------|--------|-----------|----------------------------|
| Intervention       | Outcome at 3–6 Months                  | Studies |        |           |                            |
| Home-visiting      | All-cause readmission                  | 9       | 1563   | Û         | 0.75 (0.68 to 0.86)        |
| programs           | HF-specific readmission                | 1       | 282    | Û         | 0.51 (0.31 to 0.82)        |
|                    | Composite endpoint**                   | 4       | 824    | Û         | 0.78 (0.65 to 0.94)        |
|                    | Mortality                              | 8       | 1693   | Û         | 0.77 (0.60 to 0.997)       |
|                    | Number of hospital days at readmission | 3       | 403    | Û         | WMD, -1.17 (-2.44 to 0.09) |
| Structured         | All-cause readmission                  | 8       | 2166   | ⇔         | 0.92 (0.77 to 1.10)        |
| telephone support  | HF-specific readmission                | 7       | 1790   | Û         | 0.74 (0.61 to 0.90)        |
|                    | Composite endpoint                     | 3       | 977    | ⇔         | 0.81 (0.58 to 1.12)        |
|                    | Mortality                              | 7       | 2011   | Û         | 0.74 (0.56 to 0.97)        |
|                    | Number of hospital days at readmission | 5       | 1189   | Û         | WMD, -0.95 (-2.43 to 0.53) |
| Telemonitoring     | All-cause readmission                  | 3       | 434    | ⇔         | 1.11 (0.87 to 1.42)        |
|                    | HF-specific readmission                | 1       | 182    | ⇔         | 1.70 (0.82 to 3.51)        |
|                    | Mortality                              | 3       | 564    | ⇔         | 0.93 (0.25 to 3.48)        |
| Multidisciplinary- | All-cause readmission                  | 2       | 336    | Û         | 0.70 (0.55 to 0.89)        |
| HF clinic          | HF-specific readmission                | 1       | 106    | -         | 0.70 (0.29 to 1.70)        |
|                    | Composite endpoint                     | 2       | 306    | ⇔         | 0.80 (0.43 to 1.01)        |
|                    | Mortality                              | 3       | 536    | Û         | 0.56 (0.34 to 0.92)        |
| Nurse-led          | All-cause readmission                  | 2       | 264    | ⇔         | 0.88 (0.57 to 1.37)        |
| HF clinic          | HF-specific readmission                | 1       | 158    | -         | 0.95 (0.68 to 1.32)        |
|                    | Composite endpoint                     | 1       | 106    | -         | 0.66 (0.43 to 1.01)        |
|                    | Mortality                              | 2       | 264    | ⇔         | 0.59 (0.12 to 3.03)        |
| Primarily          | All-cause readmission                  | 1       | 200    | -         | 1.14 (0.84 to 1.54)        |
| educational        | HF-specific readmission                | 1       | 223    | -         | 0.53 (0.31 to 0.90)        |
| interventions      | Composite endpoint                     | 2       | 423    | ⇔         | 0.92 (0.58 to 1.47)        |
|                    | Mortality                              | 2       | 423    | ⇔         | 1.20 (0.52 to 2.76)        |
|                    |                                        |         | Dub No |           | FUCO21 2 FF Oct 2015       |



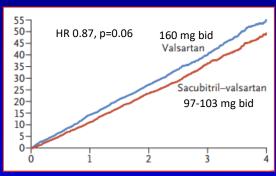
#### **CHAMPION**


Heart Failure Management Guided by Implantable PA pressure Sensor vs. Usual Care (N=550)



# 2017 Guideline Update for HFpEF

| COR | LOE  | Recommendation                                                                               |
|-----|------|----------------------------------------------------------------------------------------------|
| ı   | В    | SBP and DBP should be controlled according to guidelines                                     |
| ı   | С    | Diuretics for relief of symptoms, volume overload                                            |
| ı   | C-LD | Persistent HTN after diuresis? Rx to SBP < 130                                               |
| lla | С    | Coronary revascularization if evidence of significant CAD and symptoms/ischemia despite GDMT |
| lla | С    | Management of AF according to published guidelines                                           |
| lla | С    | Beta-blockers, ACE-I, ARBs to Rx HTN                                                         |
| llb | B-R  | Spironolactone to reduce HF hospitalization if EF>45%, GFR>30, creatinine<2.5, and K+<5.0    |
| Ilb | В    | ARBs to reduce HF hospitalization                                                            |
| =   | B-R  | PDE5i and nitrates are <b>ineffective</b> for QOL, physical activity                         |

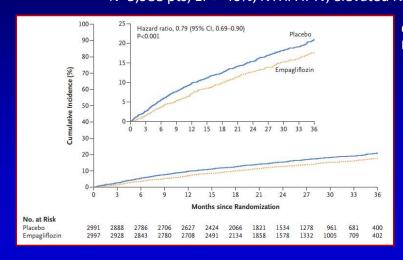

Yancy, et al. Circulation 2017;136:e137-161



#### **PARAGON-HF**

 N=4,822 pts, age ≥ 55 yrs, EF ≥ 45%, NYHA II-IV, LAA or LVH on echo, HF hosp. w/in 9 mths or elevated NT-proBNP

#### HF Hospitalizations + CV Death






Solomon et al. DOI: 10.1056/NEJMoa1908655

#### **EMPEROR PRESERVED**

• N=5,988 pts, EF > 40%, NYHA II-IV, elevated NT-proBNP



CV Death: HR 0.91 (95% CI 0.76-1.09) HF Hosp: HR 0.71 (95% CI 0.60-0.83)

> Anker et al. NEJM 2021 DOI:10.1056/NEJMoa2107038

#### **Summary**

- Optimize GDMT to improve outcomes, including consideration of ARNI and SGLT-2i
- ADHF is a clinical diagnosis, but BNP can be useful when there is diagnostic uncertainty
- Treatment of HF should be targeted at optimization of volume status
- Patients should be diuresed to JVP < 10 cm H<sub>2</sub>O when possible and routine use of inotropes should be avoided
- Initiate lifesaving therapies prior to hospital discharge and coordinate longitudinal follow-up
- Consider ivabradine and IV iron to reduce HF hospitalization
- Patients with refractory/recurrent symptoms that are resistant to standard therapy or those with high risk features should be referred to HF specialist
- Therapy for HFpEF remains limited but SGLT-2i reduce hospitalizations