Metastatic Inflammatory Myofibroblastic Tumor

September 14, 2021

Katie Janeway, MD, MMSc Associate Professor, Pediatrics, Harvard Medical School Director, Clinical Genomics, Dana-Farber Cancer Institute Alanna Church, MD Assistant Professor, Pathology, Harvard Medical School Associate Director LaMPP, Boston Children's Hospital

Disclosures Dr. Janeway Consulting Ipsen, Bayer Honoraria Foundation Medicine, Takeda I am a pediatrician so I will discuss off-label use Dr. Church Consulting, Bayer

Metastatic Inflammatory Myofibroblastic Tumor (IMT)

- Presentation
- Pathology and Molecular Diagnostics
- Overview molecular features of IMT
- Treatment
 - Molecularly targeted therapy
 - Key considerations in pediatric patients
 - Duration of therapy
 - Selection when multiple agents exist
 - Side effects
 - Resistance
 - Integration of other treatment approaches
- Germline cancer risk in young patients

Content of the Content of Content

Pathology: Inflammatory Myofibroblastic Tumor

- Fibroblast-myofibroblast-like cells in a myxoid matrix with inflammatory cells (plasma cells and occasional eosinophils). Nuclear atypia. Psammomatous calcifications.
- Positive for SMA (patchy), desmin (patchy), ROS, glut-1 (sparse), and CD163
- Negative for ALK1, EMA, S100, CD34, SOX10, and MNF116.

Inflammatory Myofibroblastic Tumor -- Overview IMT is a rare mesenchymal tumor that can occur at any age, but has a predilection for children, adolescents. 150 to 200 new cases are diagnosed annually in the United States. Location: at any side but often located in abdomen, lung and retroperitoneum. Prior to molecular era Standard therapy has been resection. Known to harbor ALK fusions

Boston Children's Hospital LaMPP Solid & Brain Tumor Fusion Panel

Targeted genes: ALK, BCOR, BRAF, BRD3, BRD4, C11orf95, CAMTA1, CCNB3, CIC, CDH11, DNAJB1, EGFR, EPC1, ERG, ETV1, ETV4, ETV5, ETV6, EWSR1, FGFR1, FGFR3, FOSB, FOXO1, FOXO4, FUS, GLI1, HMGA2, MAML2, MEAF6, MET, MKL2, MYB, MYBL1, NCOA1, NCOA2, NTRK1, NTRK2, NTRK3, NUTM1, PDGFB, PHF1, PLAG1, PPARG, PRKACA, PRKCA, PRKCB, PRKCD, QKI, RAF1, RELA, RET, ROS1, SMARCB1, SS18, SS18L1, STAT6, TAF15, TCF12, TFE3, TFEB, TFG, USP6, VGLL2, YAP1, YWHAE.

- The predicted *TFG-ROS1* fusion joins the 5' portion of TFG to the 3' portion of ROS1, likely connecting the coiled-coil domain of TFG to the intracellular kinase domain of ROS1.
- This fusion pairing has been observed in multiple tumor types, including IMT. These breakpoints have been recurrently reported
- Lung cancers with activating ROS1-rearrangements are known to respond to targeted inhibition
- Two case reports have been published of children with IMT harboring a *TFG-ROS1* fusion which responded to treatment with targeted inhibitors

Construction | Construction

OncoPanel, Center for Advanced Molecular Diagnostics, Brigham and Women's

- DNA NGS test targeting 447 genes (coding) with 60 genes targeted more fully to enable detection of structural variants
- TruSeq LT library preparation kit (Illumina, San Diego, California)
- Custom RNA bait set (Agilent SureSelect)
- Illumina HiSeq2500.
- Analysis of sequence variants, copy number alterations, structural variants, TMB, MSI and mutational signatures
- Validated for FFPE and frozen tumor

Oncopanel (initial biopsy)

9717500 aligned, mean of 193 reads across all targeted exons and 97% of all exons having more than 30 reads.

Tumor Mutational Burden/Megabase: 0.76. Mismatch Repair Status: Proficient (MMR-P / MSS)

```
Mutations:
```

Tier 2 variants: NBN c.2140C>T (p.R714*), exon 14 - in 45% of 231 reads#

Structural Variants:

Tier 1 variants: Rearrangement - ROS1 intron 34 (chr6:117644651) :: TFG intron 4 (chr3:100449604)

Tier 4 variants: POT1 c.133T>C (p.S45P), exon 7 - in 52% of 112 reads

🚰 Demo-Forber | 🚳 🗞 🖓 🖓

Integration of other treatment modalities

- In spite of dramatic response, cure with crizotinib monotherapy unlikely
- Risk of resistance developing over time
- Traditionally IMT cured with surgery

Drug name	Study	Phase	Population	Comparator	ORR, median [95% Cl] (%)	PFS, median [95% CI] (months)	OS, median [95% CI] (months)	CNS control	Most common toxicities (>20%)
Crizotinib	Expansion phase of PROFILE 1001, NCT00585195 (8)	1/11	ROS1+ advanced disease, 86% >1 prior regimen (N=50)	None	72 [58–84]	19.2 [14.4-not reached]	16.4 [13.8–19.8	-	Visual impairment (82%), diarrhea (44%), nausea (40%), peripheral edema (40%), constipation (34%), vomiting (34%), fatigue (20%), elevated transaminases (14–22%)
	EUROS1, retrospective multicenter study (9)		ROS1+, stage IV disease. 96% >1 prior regimen (N=31)	None	80 [NR]	9.2 [NR]	-	-	Not reported due to retrospective nature
	ACSé phase II trial, NCT02034981 (10)	Ш	ROS+, progressing after at least 1 treatment (N=29)	None	63 [41–81]	-	-	-	Visual disorders (62%), peripheral edema (55%), diarrhea (51%), nausea (41%), and elevated transaminases (51%)
	East Asian phase II study, NCT01964157 (11)	Ι	East Asian, ROS1+, advanced NSCLC (N=127)	None	72 [63–79]	15.9 [12.9–24]	32.5 [32.5–NR]	-	Elevated transaminases (55%), vision disorders (48%), nausea (41%) diarrhea (39%) vomiting (32%), constipation (30%), neutropenia (29%), leukopenia (23%), edema (23%)
Ceritinib	NCT01964157 (12)	Π	Advanced ROS1+, NSCLC, heavily pretreated, including 2 with crizotinib prior (N=32), 8 patients with intracranial disease	None	62 [45–77]	9.3 [0-22]	24 [5-43]	Intracranial ORR was 25%, 2/8 evaluable patients	Diarthea (78%), nausea (59%), vomiting (53%), cough (47%), abdominal pain (41%), musculoskeletal pain (41%), fatigue (22%) and dyspnea (22%), elevated creatinine (41%), elevated LFTs (25–31%)

Drug name	Study	Phase	Population	Comparator	ORR, median [95% CI] (%)	PFS, median [95% CI] (months)	OS, median [95% Cl] (months)	CNS control	Most common toxicities (>20%)
Entrectinib	ALKA-372-001, EudraCT 2012- 000148-88 and STARTRK-1, NCT02097810 (13)	I	Advanced solid tumors (including 60% NSCLC) with NTRK1/2/3, ROS1, or ALK gene fusions (N =119); 14 patients with ROS1+ NSCLC treat- ed with recommended phase II dose	None	86 [60–96]	19.0 [6.5–not reached]	-	63% (5/8 patients with baseline CNS disease, including 2 responders with ROS1+ disease)	Fatigue/asthenia (24%), dysgeusia (47%), paraesthesias (29%), nausea (24%) and myalgias (19%) (reported for all 119 patients)
Lorlatinib	NCT03052608 (14)	I	ALK+ or ROS1+ advanced NSCLC (N=54); 12 patients with ROS1+ NSCLC, of whom 7 had been treated with crizotinib previously and 5 had baseline CNS disease	None	50 [21–79]	7.0 [1.4–13.9]	-	3/5 (60%) had intracranial objective responses	Hypercholesterolemia (59%), hypertriglyceridemia (33%) peripheral edema (33%), peripheral neuropathy (39%) (reported for all 54 patients)
DS-6051b	Japanese study, NCT02675491 (15)	I	ROS1+ NSCLC (N=15), 4 had received crizotinib prior, 5 baseline CNS disease	None	58.3	NR	-	-	Elevated transaminases (80%), diarrhea (53%), nausea (47%), constipation (33%), decreased appetite (20%), dysgeusia (20%), malaise (20%), vomiting (20%)
Brigatinib	NCT01449461 (16)	1/11	Advanced malignancies; all histologies, except leukemia (N=137), 3 patients with ROS I+ NSCLC enrolled in cohort 4	None	33: 1 crizotinib naïve patient had partial response, 2 crizotinib previously treated patient, stable disease	-	-	-	Nausea (53%), fatigue (43%), diarrhea (41%)

Referral to cancer predisposition clinic

Find a Doctor

Pediatric Cancer Genetic Risk Program

• Family history

Dana-Farber

- Maternal grandfather had prostate cancer at age 51
- Maternal grandmother had thyroid cancer at age 40
- Multi-Cancer panel testing, Invitae laboratory
- NBN c.2140C>T (p.Arg714*) mutation identified
- Patient is a carrier for a recessive Nijmegen Breakage syndrome
- Individuals who carry one NBN mutation may have moderately increased risks of cancer; especially increased breast cancer risks in female carriers
 - Mother tested and she also caries this NBN gene mutation and has a personalized breast cancer screening plan

Germline Cancer Risk in Pediatric Patients

- GAIN/iCat2 study data
 - 160 participants with tumor-only and germline sequencing OncoPanel
 - Germline sequencing identified 38 pathogenic or likely pathogenic (P/LP) variants among 35 (22%) patients
 - Similar to other cohorts
 - All variants were heterozygous,
 - 18 variants in 12 genes known to have an autosomal dominant pattern of inheritance
 - 20 variants identified in 10 genes with an autosomal recessive pattern of inheritance
 - Twenty-five (66%) of these germline variants were present in the tumor sequencing report
 - Most were suspected to be germline in origin

Scheinda J, et al., manuscript under review

Dana-Farber's Junne Kamihara, MD, PhD; Jaclyn Schienda, CGC, LGC; and Alexander Holtz.

Unique Pediatric Side Effects Molecularly Targeted therapy

Treatment allowed for catch up growth.

Crizotinib \rightarrow catch up growth

Entrectinib \rightarrow weight gain

AGE AT	EUSION		METASTATIC	Modical treatment	Surgery / radiation
PRESENTATION	FUSION	LUCATION	IVIETASTALIC		Surgery / raulation
8γ	TFG-ROS1	brain, lung, perianal, leg	yes	crizotinib	resection brain/chest/perianal mass
9у	ETV6-NTRK	lung	?no	loratrectinib	?pending
1m	TPM4-ALK	liver, peritoneal deposits	yes	crizotinib	resection liver mass ((prior to medical treatment)
10y	TFG-ROS1	brain, lung, MSK, abdominal	yes	repotrectinib	Lung mass resection (prior to medical treatment)
11y	EML4-ALK	lung	no	none	Lung mass resection (no medical treatment)
5y	ALK fusion	abdomen	yes	crizotinib (rash) > ceritinib	Abdominal mass resection
12y	EML4-ALK	chest, multiple lesion	yes	doxorubicine / ifosphamide prior to transfer then ceritinib	resection of chest mass (prior to targeted therapy), radiation

👍 Dens-Ferber | 🚳

AcknowledgementsPediatric Oncology• Franziska WachterPediatric Cancer Risk Program• Jaclyn Schienda• Junne KamiharaBWH Pathology• Neal Lindeman