

ble 1. Predicte	d Log	2 ratio o	f GAIN	S(*)										
							% Tumo	or Nuclei						
	100	95	90	85	80	75	70	60	50	40	30	20	10	0
single copy	0.6	0.57	0.54	0.51	0.48	0.45	0.42	0.36	0.3	0.24	0.18	0.12	0.06	0
ible 2. Predicte	ea Logi	2 ratio d	i L055	ES(")			a(T							
	100	05	00	05	00	75	% Tumo		50	40	00	00	10	0
single conv	-100	-0.95	-0 9	85 -0.85	-0.8	-0.75	-0.7	-0.6	-0.5	40 -0.4	-0.3	-0.2	-0.1	0
two copy	-2	-1.9	-1.8	-1.7	-1.6	-1.5	-1.4	-1.2	-1	-0.8	-0.6	-0.4	-0.2	0
) Based on convers	sion of of		oer state (CN) to log	-ratio(LR)	using CN	=2*2^(LR)	and adjus	sted on the	e basis of	percent tu	umor (%T)	, CN=2*2′	(LR/%T)

Sector 2010 Sector 2010 Sector 2010 Sector 2010 Sector 2010 Sector 2010 Sector 2010 Sector 2010 Sector 2010 Sector 2010 Sector 2010 Sector 2010	 Sueriocation of variant: Focal: Relatively small change (typically less than 5 Mb) that usually contains a known or suspected driver cancer gene Whole arm: Change that involves the entire chromosome short (p) or long (q) arm Whole arm: Change that involves the entire chromosome Interstitial: Change mediated by at least two breaks within a chromosome p or q arm Terminal: Change that includes the end of the p or q arm of the chromosome Intragenic: Change that occurs within a single gene Proximal/distal: Describes a position relative to the centromere and moving outward on the chromosome p or q arm. Type of variant: Gain/loss: Type of copy-number change observed. It is recommended that the term "gain" be used rather than "duplication." Attempts should be made to determine the relative gain/loss in polyploid samples. Copy-number abournalities (CNAs): Neoplastic disease-associated changes that represent acquired gains or losses of chromosome material. Copy-neumber abournalities (CNAs): Neoplastic disease-associated changes that represent acquired gains or losses of chromosome material. Copy-neumber abournalities (CNAs): Neoplastic disease-associated changes that represent acquired gains or losses of chromosome material. Copy-neumber abournes, and terms such as absence of heterozygosity (AOH), identity by descent (IBD), and uniparental disony (UPD) should be used when the change is germline. Amplification: High corpy-number gain of sequences, typically containing oncogene(s) that are important for the cancer being studied. Note that the term should not be used to describe a single copy gain of chromosomal material to to describe gain due to polytomy. Standard thresholds used to describe a single copy gain of chromosomal material co describe gain due to polytomy. Standard thresholds used to describe a single copy number gaing CAA results t
---	--

