INPATIENT HYPERGLYCEMIA

Evidence-Based Approaches and Treatment

Nadine E. Palermo, DO Associate Director of Acute Diabetes Care Division of Endocrinology, Diabetes and Hypertension Brigham and Women's Hospital Instructor in Medicine, Harvard Medical School

Disclosures

No conflict of interest or significant financial relationships relevant to this presentation

BRIGHAM AND WOMEN'S HOSP

BRIGHAM AND WOMEN'S HOSPIT

55-year-old male with HTN, hyperlipidemia presenting with chest pain admitted for NSTEMI

He has no prior history of IFG/IGT

- · serum glucose on admission 225 mg/dL (12.5 mmol/L)
- · fasting glucose next day 200 mg/dL (11.1 mmol/L)

Is this important? What is the role for monitoring? treating?

Objectives

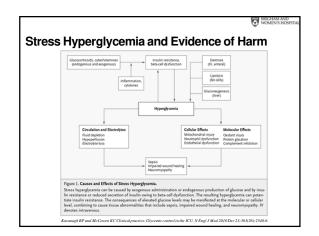
- · Rationale for glycemic control in the hospital
- Evidence-based recommendations for glycemic targets
- Management strategies for common inpatient clinical scenarios
- Important aspects to consider with new therapies for diabetes including use of non-insulin agents and technology in the acute setting and implications for transition of care
- Approach to management of hyperglycemia in hospitalized patients with SARS-CoV-2

Diabetes in the Acute Care Setting

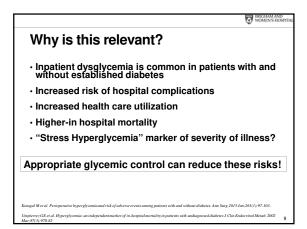
Increased prevalence
 > 30 million in US and predicted to almost triple by 2050 (~ 1 in 3 adults)
 Worldwide: in 2017-425 million adults; projected rise to 629 million by 2045

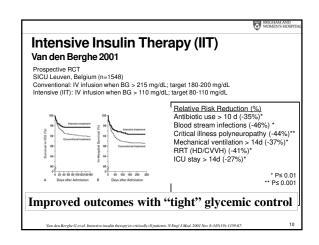
 14.2 million ED visits, 7.2 million hospital discharges

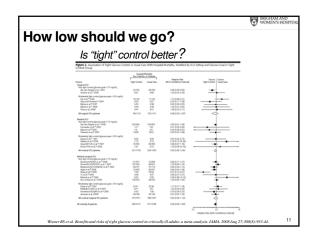
Escalating cost of diabetes care
 40% increase in last decade, \$1 in 5 US dollars with ~43% of total
 costs due to inpatient care

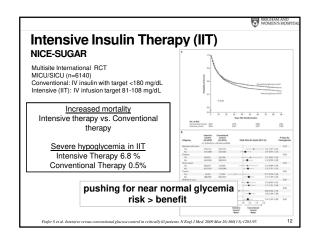


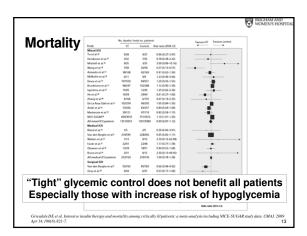
Inpatient Hyperglycemia

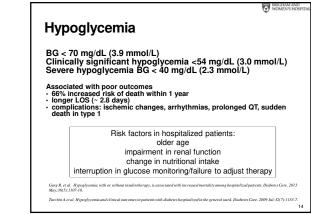

Stress hyperglycemia

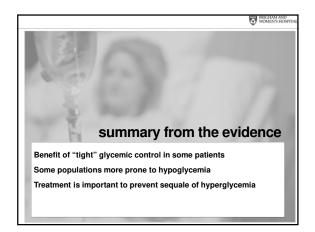

Previously undiagnosed diabetes


Established diabetes







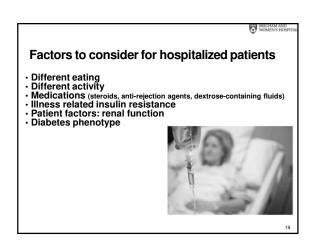


Assessment of Hyperglycemia in the Acute Care Setting

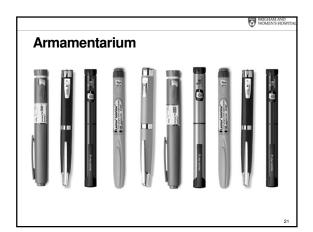
Glucose measurement in all patients admitted to hospital

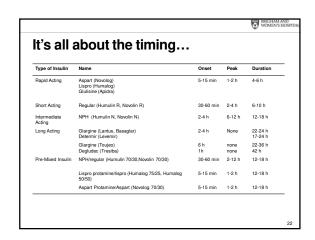
1 140 mg/dL (7.8 mmol/L) and history of DM, POCT AC and q HS

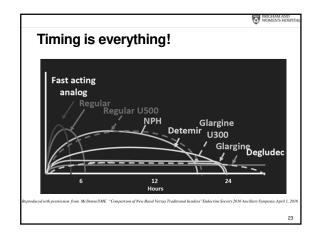
Pre-meal testing done w/in 1 hour of meal

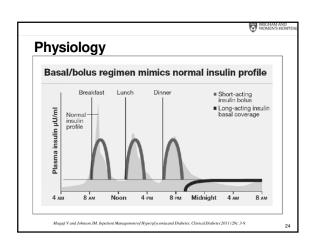

NPO/enteral nutrition q4-6h

If hyperglycemic, check HbA1c (if not checked within last 2-3 months)*

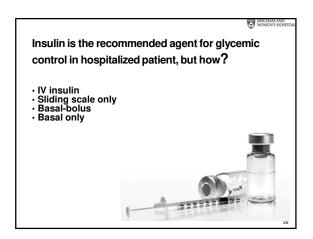

Caveat don't forget about factors that will influence HbA1c (transfusions etc)

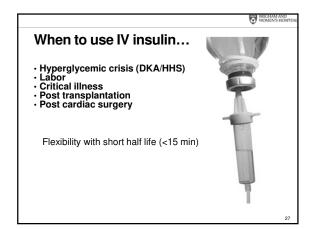

Organization	Critically III	Non-critically III Patient
ADA/AACE	< 140-180 mg/dL Initiate insulin >180 mg/dL	Pre-meal <140 mg/dL Random < 180 mg/dL*
ACP	140-200 mg/dL Recommends against IIT	
Critical Care Society	<150-180 mg/dL Initiate insulin >150 mg/dL	
Endocrine Society		Pre-meal < 140 mg/dL Random < 180 mg/dL* Adjust regimen < 100 mg/dL
Society of Thoracic Surgeons	Cardiac surgery: IV insulin <180 mg/dL peri-op ≤ 110 mg/dL fasting or premeal	
Joint British Diabetes Society		6-10 mmol/L (108-180 mg/dL) acceptable range 4-12 mm/L (72-216 mg/dL)

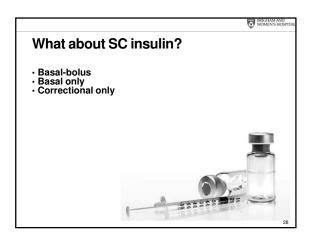

Critically III Patient	Non-critically III Patient
< 180 mg/dL (< 10.0 mmol/L)	Pre-meal <140 mg/dL (< 7.8 mmol/L) Random <180 mg/dL (< 10.0 mmol/L) +ligher glucose levels < 200 mg/dL (< 11.1 mmol/L) may be acceptable in some patients (terminally ill, multiple medical comorbidities)

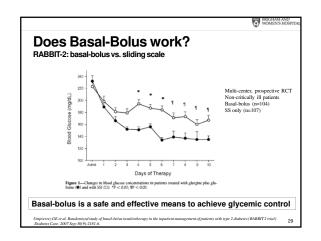


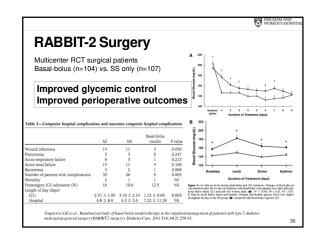
Medication	Advantages	Disadvantages
Metformin	Low risk for hypoglycemia	MALA risk in patients with hypoperfusion (RI, cirrhosis, HF
Sulfonylureas		Risk of hypoglycemia (RI, reduced po intake)
TZDs	Low risk of hypoglycemia	Slow onset, fluid retention C/I HF or hepatic dysfunction
DPP4-inhibitors	Low risk of hypoglycemia	
GLP-1 agonists	Low risk of hypoglycemia	GI effects
SGLT-2 inhibitors	Low risk of hypoglycemia	Limited data Increased risk GU infections Risk of dehydration, hypotension euglycemic DKA

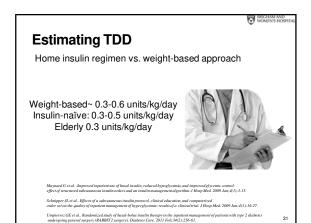


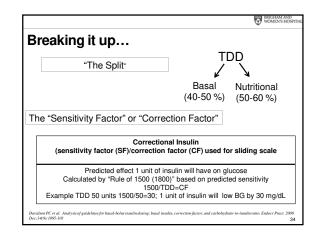







M AND VS HOSPITAL	BRIGHAN WOMEN




Factors to Consider when determining the TDD

- · For patients with known diabetes- what was control?
- Compliance using long-acting to cover both basal and prandial needs is common
- · Risk factors for hypoglycemia

renal function elderly hepatic dysfunction pancreatic dysfunction

Schnipper II. et al. Effects of a subcutaneous insulin protocol, clinical education, and computerized order set on the quality of inpatient management of hyperglycemia: results of a clinical trial. I Hosp Med. 2009 Jan;4(1):16-27.

		BRIGHAM AND WOMEN'S HOSPITA
Estimating TDD Remember this is a place to start	Baseline weight-based TDD estimate	0.5 units/kg/day, adjust by factors listed below
	Age > 70 years	-0.1 units/kg/day
	Renal insufficiency (eGFR < 45)	-0.1 units/kg/day
	Hepatic insufficiency (advanced cirrhosis)	-0.1 units/kg/day
	Pancreatic deficiency (chronic pancreatitis, CF, s/p pancreatectomy)	-0.1 units/kg/day
	HbA1c >10%	+0.1 units/kg/day
	Currently on glucocorticoids with the equivalent of prednisone 40 mg/day or greater	+0.1 units/kg/day
	FINAL TDD estimate	=

Correctional Insulin

- "Low dose" (1:50 >151) for TDD < 40 units/day
- "Moderate dose" (2:50 >151) for TDD 40-80 units/day
- "High dose" (custom) for TDD > 81 units/day

Example Calculation

60 kg patient Normal renal function

Step 1: Estimate TDD (0.5 units/kg x wt) 60 x 0.5= 30 units

Step 2: Determine "the split" (usually 50% basal, 50% prandial)

50% of 30 units= 15 15 units basal insulin 15 units total for prandial/3 (b/l/d)= 5 units AC

Step 3: Determine the "correction" (AKA sliding scale)
1500/TDD=CF
1500/30=50 (for every 1 unit of insulin, expect decrease by ~50 mg/dL)

	BRIGHAM A: WOMEN'S H
Target Glucose Leve	els
Critically III Patient	Non-critically III Patient
< 180 mg/dL (< 10.0 mmol/L)	Pre-meal <140 mg/dL (< 7.8 mmol/L) Random < 180 mg/dL (< 10.0 mmol/L)
	Higher glucose levels < 200 mg/dL (< 11.1 mmol/L) may be acceptable in some patients (terminally ill, multiple medical comorbidities)

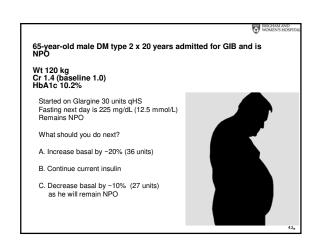
Adjustments in Insulin Regimen

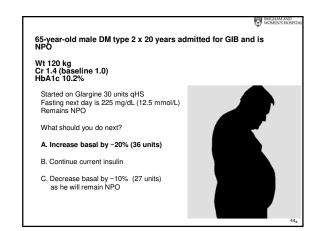
Assess glycemic control daily

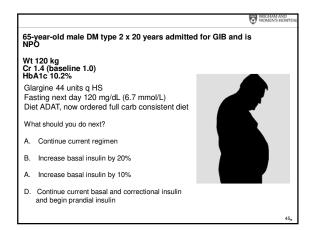
- If fasting above goal, adjust basal
 If pre-lunch above goal, adjust breakfast bolus
 If pre-dinner above goal, adjust lunch bolus
 If bedtime above goal, adjust dinner bolus
- · Strategy for adjustments

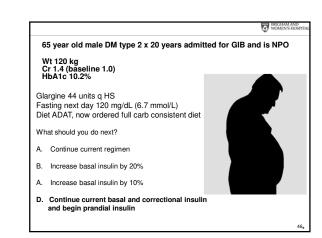
Increase by 10% for glucose values 140-180 mg/dL (7.8-10.0 mmol/L) Increase by 20% for glucose values over 180 mg/dL (> 10.0 mmol/L) Decrease by 10% for glucose values 70-99 mg/dL (3.9-5.4 mmol/L)

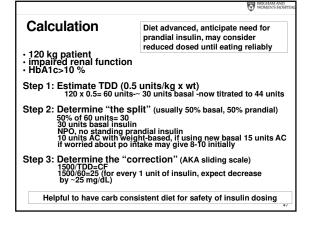
Decrease by 20% for glucose values < 70 mg/dL (< 3.9 mmol/L) Example Fasting blood sugar is 250 mg/dL (13.9 mmol/L) so basal insulin should be increased by 20%

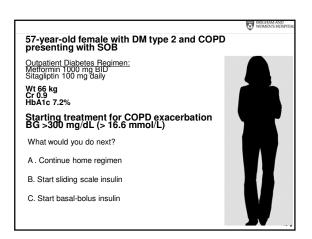

Umpierrez GE et al. Randomized study of basal-bolus insulin (RABBIT 2 surgery). Diabetes Care. 2011 Feb;34(2):256-61.

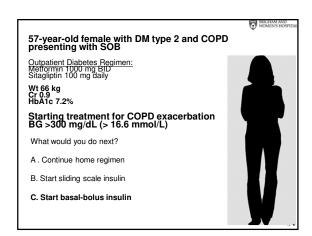

Tailor to Clinical Scenario Example insulin regimen Basal insulin (long or intermediate acting insulin if basal requirement) Regular insulin correction scale q6h Basal insulin (long or intermediate acting insulin if basal requirement)
RAI with dose reduction for decreased po intake and correction scale (or correction only) Reliable po intake Basal insulin (long or intermediate acting insulin if basal requirement) RAI with meals, correction scale with RAI to be given with nutritional dose Basal insulin (long or intermediate acting insulin if basal requirement) Nutritional insulin given as regular insulin added to TPN bag Continuous EN: nutritional dose/4 given as regular insulin q6h ^ Cycled EN: NPH^ at onset (12h cycle), RAI or short acting insulin pending cycle length^ Bolus EN: RAI with bolus ^ Enteral nutrition Steroids Basal insulin (long or intermediate acting insulin if basal requirement)-consider NPH RAI with "stacked doses" "NPH on top of" program safety " hold if TF/TPN held..." require frequent glucose monito ^recommend using order set with safety " not a it it it is it is it is it." If I'm is it is it is it is it is it. I'm it is it is it is it is it is it. I'm it is it is

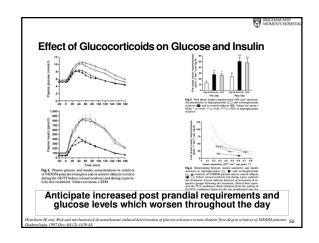

65-year-old male DM type 2 x 20 years admitted for GIB and is NPO Outpatient Diabetes Regimen: Glargine 80 units qHS Lispro 20 units AC Metformin 1000 mg BID Sitagliptin 100 mg daily Wt 120 kg Cr 1.6 (baseline 1.0) HbA1c 10.2% Admits to compliance with oral agents but "sometimes forgets insulin"

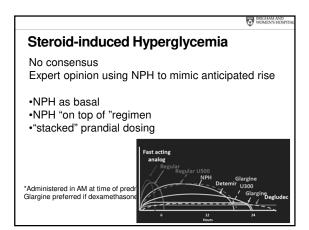

Estimating TDD emember this is a place to start	Baseline weight-based TDD estimate	0.5 units/kg/day, adjust by factors listed below
	Age > 70 years	-0.1 units/kg/day
Wt 120 kg Cr 1.6 (baseline 1.0) HbA1c 10.2%	Renal insufficiency (eGFR < 45)	-0.1 units/kg/day
	Hepatic insufficiency (advanced cirrhosis)	-0.1 units/kg/day
	Pancreatic deficiency (chronic pancreatitis, CF, s/p pancreatectomy)	-0.1 units/kg/day
	HbA1c >10%	+0.1 units/kg/day
	Currently on glucocorticoids with the equivalent of prednisone 40 mg/day or greater	+0.1 units/kg/day
	FINAL TDD estimate	= 0.5 units/kg/day

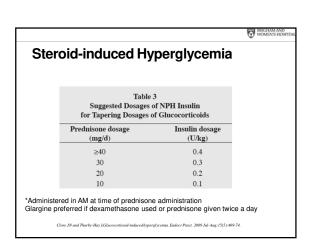

Calculation 120 kg patient Impaired renal function HbA1c >10 % Step 1: Estimate TDD (0.5 units/kg x wt) 120 x 0.5= 60 units Step 2: Determine "the split" (usually 50% basal, 50% prandial) 50% of 60 units= 30 30 units basal insulin NPO, no standing prandial insulin Step 3: Determine the "correction" (AKA sliding scale) 1500/TDD=CF 1500/60=25 (for every 1 unit of insulin, expect decrease by ~25 mg/dL)

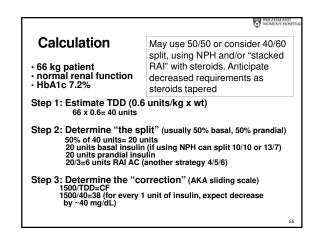


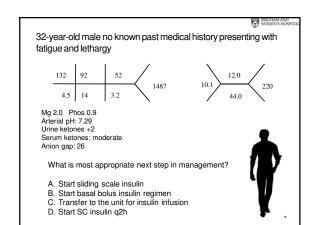


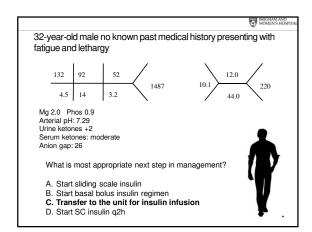


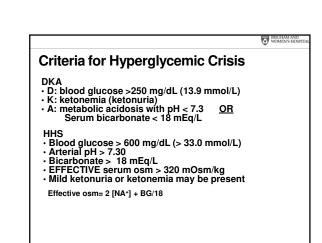


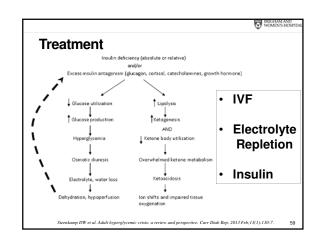


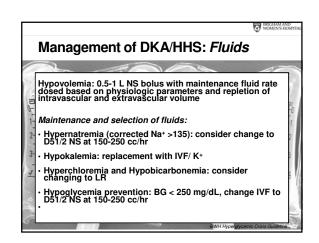


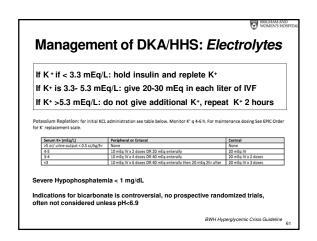


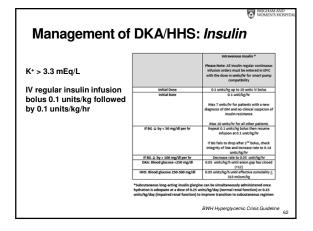


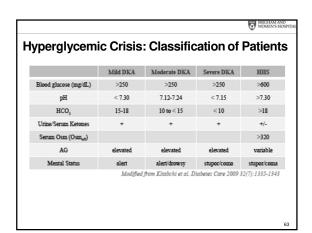

steroia-iriaac	ed Hyperglycemia
Diabetes UK Position Statements Management of hyperglycaemia and ster glucocorticoid) therapy: a guideline from British Diabetes Societies (JBDS) for Inpat	the Joint
I. Roberts ¹ , J. James ² and K. Dhatanya ³ (j., on behalf of the Joint B BDS) for Inpution Care ⁴ Conference immediate the Conference immediate the Parliament of the Conference in Conference in Conference in Confere	
Stress Hyperglycemia	Consider SU or basal insulin (in AM)
DM type 2 (not on insulin)	SU ± basal insulin (given in AM)
DM type 2 (on insulin)	Basal insulin: (consider switch to AM and increase dose)
	Premixed insulin: increase morning dose
	MDI: increase lunch and dinner RAI
DM type 1	Increase basal, increase lunch and dinner RAI

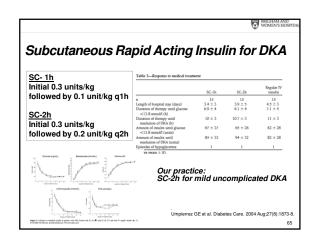

Estimating TDD Remember this is a place to start	Baseline weight-based TDD estimate	0.5 units/kg/day, adjust by factors listed below
MA CC Irm	Age > 70 years	-0.1 units/kg/day
Wt 66 kg Cr 0.9 HbA1c 7.2%	Renal insufficiency (eGFR < 45)	-0.1 units/kg/day
	Hepatic insufficiency (advanced cirrhosis)	-0.1 units/kg/day
	Pancreatic deficiency (chronic pancreatitis, CF, s/p pancreatectomy)	-0.1 units/kg/day
	HbA1c >10%	+0.1 units/kg/day
	Currently on glucocorticoids with the equivalent of prednisone 40 mg/day or greater	+0.1 units/kg/day
	FINAL TDD estimate	= 0.6 unit/kg/day

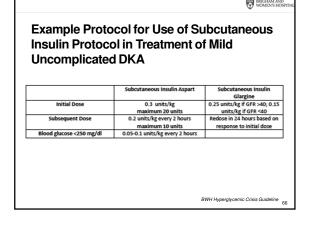


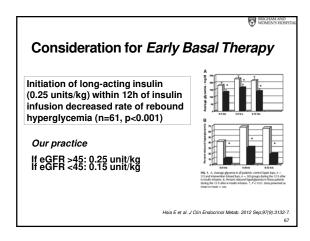


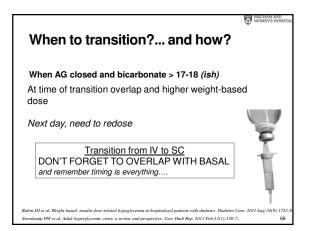












Treatment

· Hyperosmolality: how to correct safely?

No RCT for rate of correction, but expert opinion is to avoid lowering effective osm by more than 3 mOsm/hr

Don't forget to correct the sodium for glucose

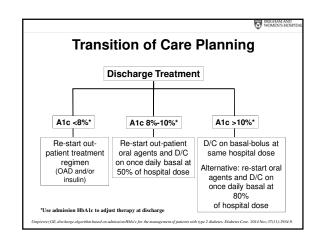
Correction yields a *very predictable* improvement in mental status. If you don't see this... look for another cause (?LP, toxic ingestion, etc.)

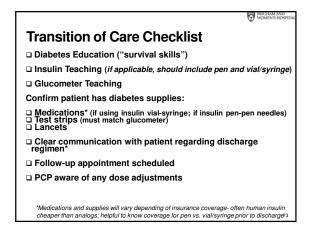
Pitfalls

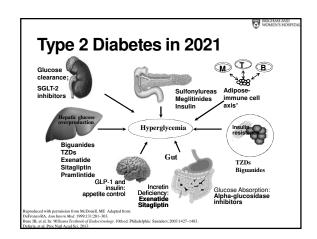
BRIGHAM AND WOMEN'S HOSPI

- · Misdiagnosis
- · Hyperglycemic crisis not yet adequately resolved
- Inadequate overlap of subcutaneous insulin with IV insulin
- · Inadequate dosing of subcutaneous insulin
- Initial insulin program does not take into account expected nutritional plan
- · Don't forget about etiology and co-existing illness

What we know works ...

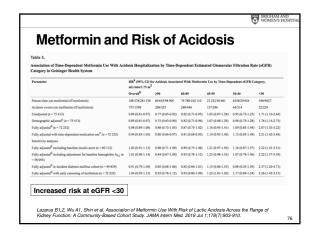

- Standardized Order sets (scheduled insulin and timing of FSBG) shown to improve glycemic control


- IV insulin protocols


Meynard G. Lee J. Phillips G. Fink E. Renvall M Improved inpatient use of basal insulin, reduced hypoglycemia, and improved glycemic control:

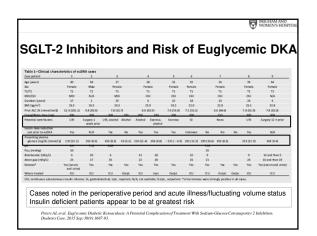
- dject of structured subcutaneous insulin orders and on insulin namagement algorithm. J Hosp Med. 2009 June 11,3-13.

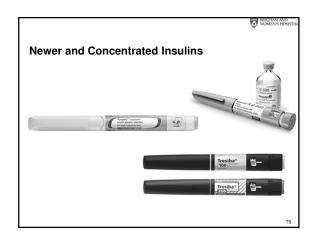
Schipper B. Manute C. D. Lang C. Prendergrass M. Effect of an abschammen similar protocol-time delucation, and computerized order set on the quality of inputient management of hyperglycemia: results of a clinical trial. J Hosp Med. 2009 Jun. 4(1):16-27.

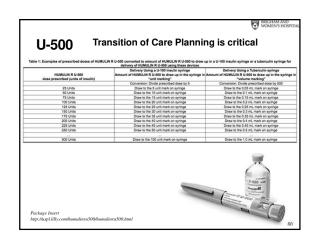


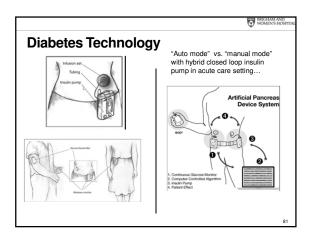
Advances In Diabetes Therapies: Implications in Hospital Medicine

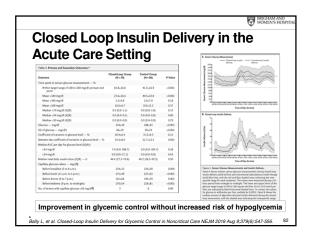
- Medications that may require dose adjustment following hospitalization
- SGLT-2 Inhibitors and risk of euglycemic DKA
- · Newer and concentrated insulins
- Diabetes Technology (CSII and CGM)


75


BRIGHAM AND WOMEN'S HOSE




Dose Adjustments Based on Renal Function: Sitagliptin Saxagliptin

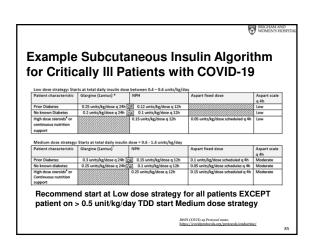

GFR (ml/min)	<u>></u> 50	30-49	<30
Sitagliptin	100 mg	50 mg	25 mg
Saxagliptin	5 mg	2.5 mg	2.5 mg
Linagliptin	5 mg	5 mg	5 mg

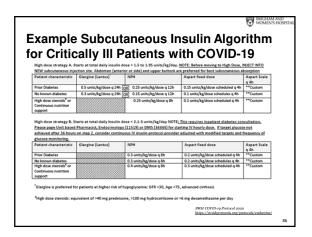
BRIGHAM AND WOMEN'S HOSPI

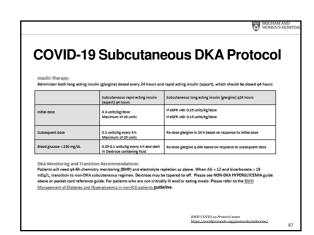
Hyperglycemia in the setting of COVID-19 What we've learned so far...

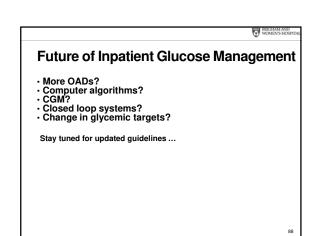
- Hyperglycemia in patients with and without a history of diabetes is associated with increased mortality
- Glucose on admission is an independent predictor of severe prognosis
- · Glycemic control matters!
- Duration of Hyperglycemia is important; window of opportunity to impact outcomes (days 2-3)
- Hyperglycemic Crisis in the setting of SARS-CoV-2 infection is common and is also associated with poor outcomes

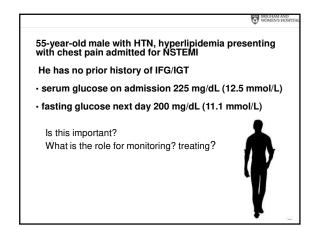
Bode B et al. J Diabetes Sci Technol. 2020 Jul;14(4):813-821 Coppell A et al. Diabetes Care 2020;45:294-2948 Monoth DG et al. Diabetes Care 2021 Feb;44(2):378-265 Pal R et al. Diabetes Care 2021 Feb;44(2):378-265 Song S et al. Front Endocrinol. 2021 Mar 20;124(4):1563-1569. Zu L et al. Cell Metals. 2020 Jul 23(1):610-6107 Challenges in Achieving Glycemic
Control with COVID-19


Variability in insulin sensitivity over course of illness (daily and in some patients hourly)


Patients with pre-existing CKD or AKI in the setting of SARS-CoV-2 are at increased risk of hypoglycemia


Significant variability in both SC and IV insulin requirements independent of therapy with glucocorticoids and vasopressors


Stand of care for critically ill patients is IV insulin which requires frequent monitoring and adjustments (q1-2h)


As an alternative approach may consider SC insulin (q4h) to reduce time at bedside and preserve PPE

