

UTI for Hospital Medicine

- General principals in diagnosis and management of UTI
 - When to test, what tests, when to treat empirically
- The problem of drug resistance
 - Time to change testing/empiric ABX guidelines?
- New and revived antibiotics
- Approach to asymptomatic bacteriuria and funguria
- Imaging in febrile UTI/pyelonephritis

Case one

39F, morbid obesity, calls back 2h after discharge from a 36h admission for a DVT following COVID. She states she forgot to mention a 3-day history of dysuria and urinary urgency prior to her admission, which are now more severe. She has no primary care provider. No fever, nausea, vomiting, or flank pain. Has occasional UTI 1-2/year. Requests an antibiotic prescription. Did not have a Foley.

What would you do?

- A. "Sorry-can't help"
- B. Ask her to make an urgent care visit
- C. Start empiric antibiotics over the phone
- D. Ask her to get dipstick before antibiotics
- E. Order outpatient UA and culture before antibiotics

Simple (afebrile) Cystitis - what if you ignore it? Natural History of Untreated Simple Cystitis in Young Women with a Normal Urinary Tract

- Episode resolution after 2–4 weeks in ~ 50%
 - may account for some of response rate reported in antibiotic trials (especially if R)
- Majority (~70%) w/ simple cystitis clear bacteriuria eventually (weeks to months)
- Progression to pyelonephritis & renal failure rare (if normal GU tract anatomy and function)

Table 3.	Symptomatic	and	bacteriological	effect	of	nitrofurantoin	versus	placeb
CELLIMIT	or more on inc	history	n n = 561					

	Nitrofurantoin (Day 1, $n = 29$)	Placebo (Day 1, n = 27)
Day 3 — bacteriology: (nitrofurantoin n = 26, placebo n = 25; symptoms: nitrofurantoin n = 25, placebo n = 25°		
Bacteriological cure Symptomatic cure or improvement	21 (81) 20 (80)	5 (20) 11 (44)
Day 7 — bacteriology: (nitrofurantoin $n = 23$, placebo $n = 22$; symptoms: nitrofurantoin $n = 24$, placebo $n = 24$		
Bacteriological cure Symptomatic cure or improvement	17 (74) 21 (88)	9 (41) 13 (54)

Hooton, Infect Dis Clin North Am 2003 Hooton, CID, 2004 Christiaens, <u>Br J Gen Pract.</u> 2002 Falagas, J of Infection, 2009

Case one

39F, morbid obesity, calls back 2h after discharge from a 36h admission for a DVT following COVID. She states she forgot to mention a 3-day history of dysuria and urinary urgency prior to her admission, which are now more severe. She has no primary care provider. No fever, nausea, vomiting, or flank pain. Has occasional UTI 1-2/year. Requests an antibiotic prescription. Did not have a Foley.

What would you do?

- A. "Sorry-can't help"
- B. Ask her to make an urgent care office visit
- C. Start empiric antibiotics over the phone
- D. Ask her to get dipstick before antibiotics
- E. Order outpatient UA and culture before antibiotics

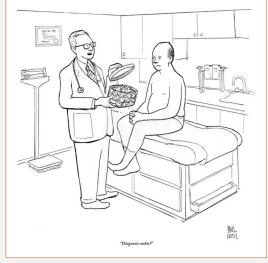
Testing for Simple Cystitis in Women

Pros

- Diagnostic accuracy: sensitivity of only 1 symptom ~50% (dysuria a bit higher)
- A urinalysis can exclude a UTI
- Resistance in the community on the rise – tailor antibiotic to organism
- Societal / environmental and personal costs of antibiotic overuse not measured

Testing for Simple Cystitis in Women

Cons


- Sensitivity of symptoms triad for cystitis in healthy non-pregnant woman ~96%
- · Causative organisms predictable
- Most respond clinically to a standard empiric antibiotic course
- · Cost of visit and tests
 - Several phone triage studies show it's a cost-effective approach

Pros

- Diagnostic accuracy: sensitivity of only 1 symptom ~50% (dysuria a bit higher)
- A urinalysis can exclude a UTI
- Resistance in the community on the rise – tailor antibiotic to organism
- Societal / environmental and personal costs of antibiotic overuse not measured

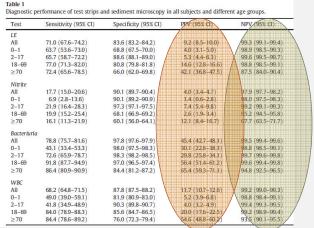
Testing for Simple Cystitis in Women

Non-culture Diagnostic Options Looking for Pyuria

- ≥10 WBC/mL in midstream urine (≥ 5 in a sediment of spun urine)
- Pyuria is present in almost all women with acute cystitis
 - ➤ Sensitivity high: ~90%
- Pyuria without acute cystitis is common
 - ➤ Specificity low: ~70%
- Dipstick <u>leukocyte esterase</u> rapid screening test for pyuria
 - Sensitivity (for detecting >10WBC/mL): 75-96%
 - > Specificity for pyuria 94-98%

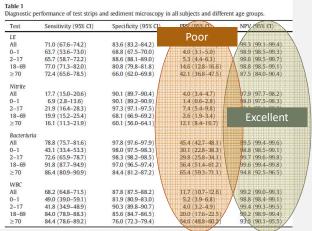
Non-Culture Diagnostic Options Looking for Bacteriuria

Nitrite (positive helpful, negative not)


- Sensitivity ~20% (POOR). False negative: low (10²-10⁵/mL) colony counts
 - non nitrite producer: *Enterococci, S. saprophyticus, Acinetobacter,* dilute urine
- Specificity for bacteriuria~95% (GOOD) false positives are rare

Urine microscopy with gram stain

- Labor intensive, messy, poor sensitivity ~50% (can't rule-out)
- Good specificity ~90% (if one dominant organism seen)


Kuijper, et al. Eur. J. Clin. Micro Infect Dis 22; 228 (2003)

Urinalysis, Positive and Negative Predictive Values for positive culture (by age group)

Kayalp et al. Clinical biochemistry 2013 (46) 1285

Urinalysis, Positive and Negative Predictive Values for positive culture (by age group)

Kayalp et al. Clinical biochemistry 2013 (46) 1285

Diagnostic Options Culture

• Why Culture?

- Confirms diagnosis (significant bacteriuria, >100,000 CFU/mL*?)
- Identifies causative organism
- Provides susceptibility testing to tailor therapy accordingly
- · Assures no resistance
- *CFU=colony forming units

What percent of young women with simple cystitis (frequency, urgency, or dysuria) have >10⁵ CFU/ mL of a single uropathogen in the urine?

- A. 85%
- B. 65%
- C. 50%
- D. 33%
- E. 25%

What percent of young women with simple cystitis (frequency, urgency, or dysuria) have >10⁵ CFU/ mL of a single uropathogen in the urine?

B. 65%

C. 50%

D. 33%

E. 25%

* ~90% for women who have recurrent UTI

What about the other 50%?

- Most have "acute urethral syndrome":
- If therapy delayed 2d 48% will have >10⁵ (early presenters)
- 10²-10⁵ still 95% sensitive & 85% specific for UTI (comparator: suprapubic aspirate)
- Recent study showed that even 10² cfu of *E. coli* are predictive of UTI (comparator cath urine) in young women. Gram positives not predictive
- Some have "symptomatic abacteriuria" e.g. urethritis (GC/ chlamdia/mycoplasma/trichomonas/other), genital herpes vaginitis, non-infectious process

Stamm, et al. NEJM; 1980 303: 409 Hooten et. Al. NEJM; 2013 369;20

Survey of Culture Results in Outpatient Urine Samples from US Women

 $\begin{tabular}{ll} Table 1. & Distribution of uropathogens that cause urinary tract infections in women. \end{tabular}$

	Frequency am by age gr		
Uropathogen	15-50 years of age	>50 years of age	
Escherichia coli	72	53	
Klebsiella species	6	12	
Proteus species	4	6	
Enterobacter species Uncomplicate	2	2 Com	plicated
Pseudomonas aeruginosa	1	4	
Other gram-negative rod	2	4	
Enterococcus species	5	12	
Staphylococcus aureus	2	2	
Staphylococcus saprophyticus	2	0.2	
Coagulase-negative staphylococci	3	2	Gupta et. al.
Other	1	3	CID 2001(33): 89

Uncomplicated UTIs (simple/afebrile cystitis in [young] women)

Most treatment guidelines and recommendations for <u>simple</u> <u>or uncomplicated cystitis in women</u> focus on symptom-based empiric therapy based on resistance data from the community (local data and local practitioners' experience)

IDSA / International Guidelines (2010) Treatment of Acute Uncomplicated Cystitis

Recommended

- Nitrofurantoin macrocrystals 100mg twice daily x 5 days
- TMP/SMX DS twice daily x 3 days

if E. coli's resistance rates <20%

- Empiric Fosfomycin 3 gm x1
- Pivmecillinam 400 mg twice daily x 5 days

Not recommended

- Fluoroquinolones 3 days
- β-lactams

IDSA / International Guidelines (2010) Treatment of Acute Uncomplicated Cystitis

Recommended

- Nitrofurantoin macrocrystals 100mg twice daily x 5 days
- TMP/SMX DS twice daily x 3 days if E. coli's resistance rates <20%
- Empiric Fosfomycin 3 gm x1
- Pivmecillinam 400 mg twice daily x 5 days

Not recommended

- Fluoroquinolones 3 days
- β-lactams

- Resistance higher (not just to TMP/SXT)
- Efficacy in some recent studies lower
- Nitrofurantoin and fosfomycin NOT RECOMMENDED if early pyelonephritis suspected

IDSA / International Guidelines (2010) Treatment of Acute Uncomplicated Cystitis

Recommended

- Nitrofurantoin macrocrystals 100mg twice daily x 5 days
- TMP/SMX DS twice daily x 3 days if E. coli's resistance rates <20%
- Empiric Fosfomycin 3 gm x1
- (Pivmecillinam 40omg twice daily x 5 days

Not recommended

- Fluoroquinolones 3 days
- β-lactams

- Resistance higher (not just to TMP/SXT)
- Efficacy in some recent studies lower
- Nitrofurantoin and fosfomycin NOT RECOMMENDED if early pyelonephritis suspected
- When diagnosis in question urinalysis with reflex culture
- When resistance a concern culture (may start empiric antibiotic while waiting)

Fosfomycin (3-g x1) or Nitrofurantoin (100 mg thrice daily x = 5 days) for UTI

- 93% completed trial,
 73% + baseline CX
- Resistance to both agents low for *E. coli*.
- Klebsiella and Proteus resistance rates higher
- Clinical Resolution 28d (P < .004, .001 for E. coli)
 - Nitrofurantoin 70% (E. coli 78%)
 - Fosfomycin 58% (*E. coli* 50%)
- Micro Resolution 28d
 - Nitrofurantoin 74% (E. coli 84%)
 - Fosfomycin 63 % (*E. coli* 59%)
- Methodologic problems: open label, lots of LTF, positive cultures at baseline not required (27% did not have)
- Response rates lower than other studies for both arms
- Nitrofurantoin dose 100 mg TID (in US 100 mg BID)

JAMA. 2018;319(17):1781-1789

48F, MS on ocrelizumab (B cell depleting agent), neurogenic bladder / CIC. Has h/o recurrent UTI. Childhood allergy to amoxicillin (rash).

SX: malaise, dysuria, "bladder spasms", leg spasms, low back discomfort, no flank pain, no nausea or systemic toxicity.

UA: >182W, nitrites.

Cx: "ESBL" producing E. coli.

Susceptible: amox/clav, pip/tazo,

meropenem, imipenem.

Resistant: trimethoprim/sulfa, FQ,

aminoglycosides.

She's directly admitted to medicine for IV meropenem and home hospital

or VNA transfer

48F, MS on ocrelizumab (B cell depleting agent), neurogenic bladder / CIC. Has h/o recurrent UTI. Childhood allergy to amoxicillin (rash).

SX: malaise, dysuria, "bladder spasms", leg spasms, low back discomfort, no flank pain, no nausea or systemic toxicity.

UA: >182W, nitrites.

Cx: "ESBL" producing E. coli.

Susceptible: amox/clav, pip/tazo,

meropenem, imipenem.

Resistant: trimethoprim/sulfa, FQ,

aminoglycosides.

She's directly admitted to medicine for IV meropenem and home hospital or VNA transfer

Which of the following is correct (may chose more than one correct answer)

- A. Oral fosfomycin is adequate if susceptible
- B. Oral nitrofurantoin is adequate if susceptible
- C. Amox/clav may be given after a test dose or skin test
- D. Once daily ertapenem is likely adequate

48F, MS on ocrelizumab (B cell depleting agent), neurogenic bladder / CIC. Has h/o recurrent UTI. Childhood allergy to amoxicillin (rash).

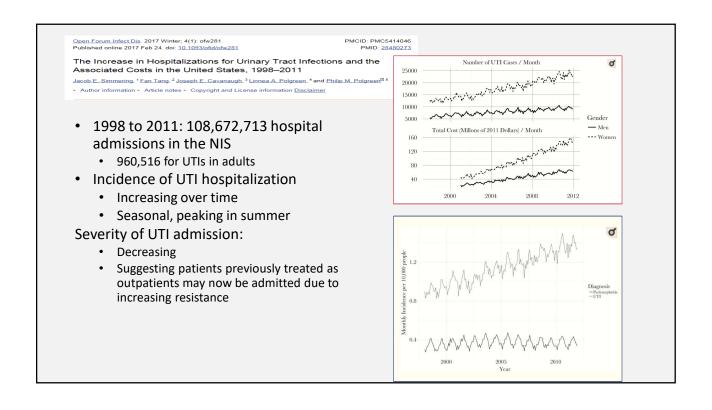
SX: malaise, dysuria, "bladder spasms", leg spasms, low back discomfort, no flank pain, no nausea or systemic toxicity.

UA: >182W, nitrites.

Cx: "ESBL" producing E. coli.

Susceptible: amox/clav, pip/tazo,

meropenem, imipenem.


Resistant: trimethoprim/sulfa, FQ,

aminoglycosides.

She's directly admitted to medicine for IV meropenem and home hospital or VNA transfer

Which of the following is correct (may chose more than one correct answer)

- A. Oral fosfomycin is adequate if susceptible
- B. Oral nitrofurantoin is adequate if susceptible
- C. Amox/clav may be given after a test dose or skin test
- D. Once daily ertapenem is likely adequate


Fosfomycin

- Phosphonic acid, inhibits bacterial cell wall synthesis
 - FDA approval E. coli and E. faecalis uncomplicated cystitis
- Susceptibility in urinary isolates (overestimated?):
 - ~90.6% of *Enterococci*, 90-94% of *Enterobacteriaceae* (~95% *E. coli*, 90-95% *Klebsiella*), 89.7% PsA susceptible overestimated?
 - No AST guidelines for most organisms
 - Interpretation of susceptibility varies: different thresholds by regulatory bodies with debate: how to interpret colonies inside zone of clearance
- Response rates 3g dose: 78%-83% (58% in a recent study)
- Complicated cystitis 2-3 doses every other / every third day
- Prostatitis: daily for 6 weeks (wait, what?)
- Barriers: not routinely tested for, CLSI guidelines limited, cost, need for prior auth / waivers

Hirsch. Int J Antimicrob Agents 2015; 46:642 Liu. J Microbiol Immunol Infect 2011; 44:364

Fosfomycin

Occurrence of nonsusceptible inner colonies on fosfomycin disk diffusion testing that would confound sensitivity interpretation – rare event

Nitrofurantoin

- Only indication for use: cystitis
- Recommended IDSA guidelines dose 100 mg PO BID, but in some countries TID is the norm
- Resistance rates remain very low (1-1.4% MDR *E.coli*)
- Barriers: tissue drug concentrations low: not effective in systemic or deep tissue infection (e.g. blood stream, kidney, prostate), GFR
- Side Effects
 - · More common in elderly and with renal impairment
 - common: nausea (8%) & headache (6%); less common: hepatitis, neuropathy, interstitial lung disease / pulmonary fibrosis
- PDR: do not use at CrCl <60 ml/min
 - · Concerns: insufficient renal excretion with renal impairment and toxicity
 - A 2015 Beers criteria revision provided a more liberal CrCl threshold in the elderly (<30 rather than <60 mL/min)
 - This remains controversial
 - Use only for short tem (≤7 days)

J Am Geriatr Soc 63:2227-2246, 2015

Fluoroquinolones in UTI

- For GNR in UTI: cipro generally preferred.
 - levofloxacin/moxifloxacin add atypical +respiratory coverage (e.g. GU mycoplasma)
 - Moxifloxacin loses PsA
- Notable advantages:
 - oral bioavailability, tissue penetration (**prostate**, **abscesses**, **kidney**), tolerability, bactericidal, inexpensive, broad
- Notable disadvantages:
 - Connective tissue damage: tendinopathy /tendon rupture/ aneurysms/retinal detachment (age>60 Aj RR 3), QT prolongation/arrythmia, neuropsychiatric side effects/neuropathy, emerging resistance, hypoglycemia, teratogenic
 - Antimicrobial stewardship: C. difficile and MRSA selection
- Drug interactions (Mg, Fe, Ca, Al decrease absorption)

What if 75M, with frequent relapses or *E. coli* UTI, whom you have just decided to treat for **chronic prostatitis**

UA: >182W, nitrites.

Cx: "ESBL" producing E. coli.

Susceptible: amox/clav, pip/tazo,

meropenem, imipenem. **Not checked**: Ertapenem

Resistant: trimethoprim/sulfa, FQ,

aminoglycosides.

He's directly admitted to medicine for IV meropenem and home hospital or VNA transfer

What if 75M, with frequent relapses or *E. coli* UTI, whom you have just decided to treat for **chronic prostatitis**

UA: >182W, nitrites.

Cx: "ESBL" producing E. coli.

Susceptible: amox/clav, pip/tazo,

meropenem, imipenem. **Not checked**: Ertapenem

Resistant: trimethoprim/sulfa, FQ,

aminoglycosides.

He's directly admitted to medicine for IV meropenem and home hospital or VNA transfer Which of the following is correct (may chose more than one correct answer)

- A. Oral fosfomycin is adequate if susceptible
- B. Oral nitrofurantoin is adequate if susceptible
- Amox/clav may be given after a test dose or skin test
- D. Once daily ertapenem is likely adequate

What if 75M, with frequent relapses or *E. coli* UTI, whom you have just decided to treat for **chronic prostatitis**

UA: >182W, nitrites.

Cx: "ESBL" producing E. coli.

Susceptible: amox/clav, pip/tazo,

meropenem, imipenem.

Not checked: Ertapenem

Resistant: trimethoprim/sulfa, FQ,

aminoglycosides.

He's directly admitted to medicine for IV meropenem and home hospital or VNA transfer Which of the following is correct (may chose more than one correct answer)

- A. Oral fosfomycin is adequate if susceptible
- B. Oral nitrofurantoin is adequate if susceptible
- C. Amox/clav may be given after a test dose or skin test
- D. Once daily ertapenem is likely adequate

Cystitis and prostatitis in Men Therapeutic dilemmas

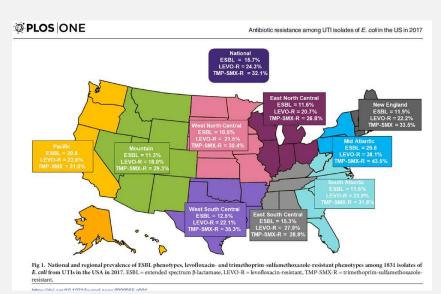
- For afebrile cystitis how long is long enough? How short is too short?
 - 7 or 14 days? Shorter regimens adequate?
- Are antimicrobials penetrating prostate preferred even for simple cystitis?
- Recent VA study: 272 afebrile men (69Y median age) randomized within 7d of starting cipro or TMP/SXT to stop at 7d or continue for 14d
 - Symptom resolution not significantly different (≈92%)
 - Subgroup with positive (77%) or negative (23%) culture also no difference
 - At 28d recurrence of sx similar in both treatment groups (≈12%)
 - · No patients progressed to febrile or upper UTI
 - Incidence of adverse events was similar in both treatment groups.
 - Conclusion: for afebrile cystitis 7 days likely sufficient if using cipro or TMP/SXT

Chronic Prostatitis with FQ-R TMP/SXT MDRO Is Fosfomycin an oral option?

- Small, non protein-bound, lipid soluble, non ionized, alkaline
- Standard TMP/SXT or Cipro good penetration.
- Doxycycline or azithro penetrate well; doxy bacteriostatic, pathogen spectrum limited
- Fosfomycin achieves acceptable prostatic concentration in an inflamed prostate. In health volunteers, therapeutic levels u to 17h after 3g dose.
- Greek study of Fosfomycin 3g q24h x 1 week, then q48h for 6-12w
- 44 patients, 33 FQ-R, 14% Enterococci
 - Cure EOT / 3M / 6M: 82% / 80% / 73%
 - Eradication: 86% EOT / 6m: 86% / 77%
 - Failure 12 patients
 - Side effects: diarrhea: 8 patients (18%). 1 discontinuation, 4 changed to q72h intervals

Karaiskos. J Antimicrob Chemother 2019

UTI with Multidrug Resistant Organisms (MDRO)


- MDRO: resistance to ≥ 1 agent in ≥ 3 antibiotic classes
- Risk factors for MDRO
 - · Urinary MDRO in the past
 - Recent stay at healthcare facility (hospital, LTAC)
 - Travel to areas with high rate of resistance
- Rates of both healthcare and community associated MDRO UTI on the rise:
 - Before 2003 most ESBL producing Enterobacteriaceae were health-care associated Klebsiella
 - Since 2003 steady increase in highly resistant and ESBL- producing E. coli in community associated UTI
 - Many of those retain susceptibility to fosfomycin and nitrofurantoin

Walker et al. CID 2016. 63:960 Sanchez et al. J Antimicrob Chemother 2014; 69:325

Intrinsic versus Acquired Resistance

Antimicrobial Agent Organism	Ampicillin	Amoxicillin- clavulanate	Ampicillin- sulbactam	Piperacillin	Ticarcillin	Cephalosporins I: Cefazolin, Cephalothin	Cephamycins: Cefoxitin, Cefotetan	Cephalosporin II: Cefuroxime	Imipenem	Tetracyclines	Tigecycline	Nitrofurantoin	Polymyxin B Colistin	Aminoglycosides
Citrobacter freundil	R	R	R			R	R	R			- 5			
Citrobacter koseri. Citrobacter amalonaticus group*	R				R			-						
Enterobacter cloacae complex ^b	R	R	R			R	R		0.0		- 8			
Escherichia coll	There is	s no intrin	sic resista	nce to β-	lactams i	n this organ	ism.							
Escherichia hermannii	R			107.5	R	- 09	1			- 1	- 5			
Hafnia alvel	R	R	R			R	R							
Klebsiella (formerly Enterobacter) aerogenes	R	R	R			R	R							
Klebsiella pneumoniae, Klebsiella oxytoca, Klebsiella variicola	R				R									
Morganelia morganii	R	R				R		R			R	R	R	
Proteus mirabilis	There is organis		sic resista	nce to pe	inicillins a	and cephalo	sporins in	this		R	R	R	R	
Proteus penneri	R					R		R	r.	R	R	R	R	
Proteus vulgaris	R					R		R	ε	R	R	R	R	
Providencia rettgeri	R	R				R				R	R	R	R	
Providencia stuartii	R	R				R			ε	R	R	R	R	- 11
Raoultella spp.º	R				R		a green commence	eserre.						
Salmonella and Shigella spp.			sic resista		lactams i	n these org	anisms; re	fer to						
Serratia marcescens	R	R	R			R	R	R	- 11		- 4	R	R	
Yersinia enterocolitica	R	R			R	R								

National trends in urinary E. coli susceptibilities

Gram Negative Rods	#	AMP	AMC	TZP	FOX	CRO	CAZ	FEP	CIP	LVX	GEN	AMK	TOB	MEM	ETP	SXT	TET	NIT
Citrobacter freundii^	135	R	R	84	R	80	82	99	93	87	99	100	96	100	*100	87	88	*95
Citrobacter koseri	108	R	99	99	96	95	96	99	96	94	98	100	98	100	*100	98	97	*79
Enterobacter cloacae^	322	R	R	74	R	70	73	93	93	90	98	100	97	98	*100	90	89	*29
Escherichia coli^^	4882	55	84	97	93	91	94	97	79	74	91	100	92	100	*100	76	74	*97
Klebsiella aerogenes^	158	R	R	89	R	87	88	100	97	95	99	100	99	100	*100	97	96	*9
Klebsiella oxytoca	207	R	94	96	98	95	97	99	94	93	99	100	98	100	*100	95	92	*73
Klebsiella pneumoniae	1048	R	90	94	95	89	91	97	86	83	94	100	93	99	*100	84	79	*27
Morganella morganii^	85	R	R	95	33	87	85	95	84	81	92	100	98	100	*100	81	55	R
Proteus mirabilis	457	81	99	100	98	99	99	99	87	86	93	100	95	100	*99	83	R	R
Serratia marcescens^	161	R	R	98	R	96	99	100	96	96	98	99	91	100	*100	99	22	R

** Citrobacter, Enterobacter, Morganella and Serratia may develop resistance during processors.

** Not all isolates were tested for susceptibility, nitrofurantoin results are based off of urinary isolates only

** Not all isolates were tested for susceptibility, nitrofurantoin results are based off of urinary isolates only

** Not all isolates were tested for susceptibility, nitrofurantoin results are based off of urinary isolates only

** Not all isolates were tested for susceptibility, nitrofurantoin results are based off of urinary isolates only

** Not all isolates were tested for susceptibility, nitrofurantoin results are based off of urinary isolates only

** Not all isolates were tested for susceptibility, nitrofurantoin results are based off of urinary isolates only

** Not all isolates were tested for susceptibility, nitrofurantoin results are based off of urinary isolates only

** Not all isolates were tested for susceptibility, nitrofurantoin results are based off of urinary isolates only

** Not all isolates were tested for susceptibility, nitrofurantoin results are based off of urinary isolates only

** Not all isolates were tested for susceptibility, nitrofurantoin results are based off of urinary isolates only

** Not all isolates were tested for susceptibility, nitrofurantoin results are based off of urinary isolates.

** Not all isolates were tested for susceptibility isolates were from a urinary source of the urinary isolates.

** Not all isolates were tested for susceptibility isolates.

** Not all isolates were tested for susceptibility isolates.

** Not all isolates were tested for susceptibility isolates.

** Not all isolates were tested for susceptibility isolates.

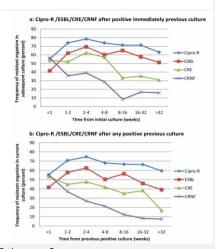
** Not all isolates were tested for susceptibility isolates.

** Not all isolates were tested for susceptibility isolates.

** Not all isolates were tested for susceptibility isolates.

** Not all isolates were tested for susceptibility isolates.

** Not all isolates were tested for susceptibility isolates.


** Not all isolat

	#	CAZ	FEP	TZP	CIP	LVX	GEN	AMK	TOB	MEM	ATM
Pseudomonas aeruginosa	668	93	92	91	77	69	90	95	95	90	*71

BWH antibiogram, all isolates, 2020

Should we use prior microbiological susceptibility data from the patient to select empiric therapy?

- 19,546 urine cultures from 4,409 inpatients with UTI, and a previous resistant urinary isolate
- Resistant rates high: cipro 47.7%, ESBL 31.9%, CRE 1.7%, CRNF 2.6% *
- A previous cultures with resistance was highly predictive of a repeat resistant organism with the same phenotype
- · While the association declined over time, it remained significant at 6m and for nearly 2 years

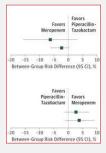

^{*} ESBL: Extended spectrum beta lactamase producing Enterobacteriaceae, CRE: Carbapenem R Enterobacteriaceae, CRNF: carbapenem-resistant non-fermenter

Antimicrobial agents and chemotherapy 2016; 60: 4717-4721

Prior resistant isolates may persist and can be used guide antibiotic choice

Extended Spectrum Beta-Lactamase (ESBL) Producing Bacteria

- A group of enzymes conferring resistance to mist beta lactams including third gen cephalosporins and aztrenonam
- · Plasmid mediated
- Hospital, environmental, animal, and food contamination


ESBL:

carbapenem or pip/tazo?

IA | Original Investigation

Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With *E coli* or *Klebsiella pneumoniae* Bloodstream Infection and Ceftriaxone Resistance A Randomized Clinical Trial

JAMA September 11, 2018 Volume 320, Number 10

Failure

Success

RCT, bacteremia

Is Piperacillin-Tazobactam Effective for the Treatment of Pyelonephritis Caused by Extended-Spectrum β-Lactamase-Producing Organisms? Sima L Sharara, Joe Amoah, Zoi D Pana, Patricia J Simner, Sara E Cosgrove, Pranita D Tamma

■

Clinical Infectious Diseases, ciz1205, https://doi.org/10.1093/cid/ciz1205

Published: 20 December 2019 Article history ▼

- No differences in resolution of sx d7 or
- 1 (2%) patient in the TZP arm and 11 (8%) patients in the carbapenem arm had incident carbapenem-resistant organisms within 30 days

Observation, pyelonephritis

AmpC Ambler Class C gene carriers

- · Chromosomally encoded
- Inducible in SPiCE-M (or SPACE ESCPM) organisms: exposure to β-lactams → AmpC production → β-lactam resistance in oftent initially susceptible isolate
- Before induction, could appear to be susceptible to thirdgeneration cephalosporins → resistance may develop while on therapy (20%)
- · Non-inducible in E. coli

Serratia marcescens

Providencia stuartii

Indole positive proteae (not mirabilis)

Acinetobacter

Citrobacter spp.

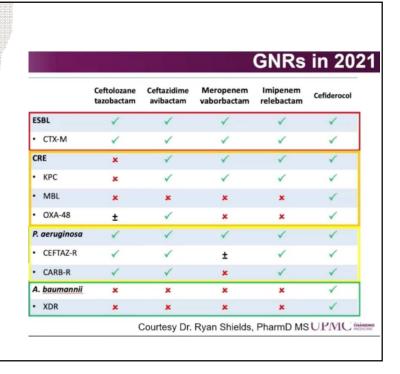
Enterobacter spp.

Morganella morganii

MDRO Oral Options

- If susceptible, and adequate (e.g. cystitis/prostatitis/stepdown=deescalation), use **oral agents**: nitrofurantoin (for simple cystitis), TMP/SXT, amox/clav, cefpodoxime, FQ, fosfomycin(?)
 - When **source control achieved** \rightarrow **transition to oral therapy** to complete course (MDRO or susceptible organisms, nitrofurantoin not adequate for this indication).
- Confirm charted allergies and consider skin testing & graded challenge if unclear allergy history
- Tetracyclines are not stable in urine and are hepatically cleared. Would avoid for cystitis when alternatives.
 - If considered, tetracycline has a higher urinary clearance than doxycycline or minocycline. Doxycycline good to use for prostatitis, urethritis.

Pallet & Hand. J Antimicrob Chemother 2010; 65s3: s25-33


Empiric ABX for Febrile / Hospitalized UTI

- Non-septic, no risk factors for resistance: ceftriaxone, ciprofloxacin or levofloxacin, pip/tazo
- Concern for *Pseudomonas aeruginosa*, no prior resistance: cefepime, ceftazidime, or piperacillin-tazobactam
- Concern for **multidrug resistant/ESBL Enterobacteriace**: carbapenem (or pip/tazo vs. cefepime if susceptible before, or not septic)
- Concern for SPICE organism/AMP-C, sick: cefepime or carbapenem
- Severe penicillin allergy -> Aztreonam (call ID/allergy)
- Suspected gram-positive cocci: vancomycin, linezolid (not renally cleared), or daptomycin (not for pneumonia)
- Septic, sick, high resistance risk: CALL ID. Consider two different agents until susceptibility known.
- For home discharge if no oral options:
 - · Remember ertapenem is once daily, but narrower spectrum than other carbapenem
 - · Continuous infusions or daily pump infusions may allow home dosing

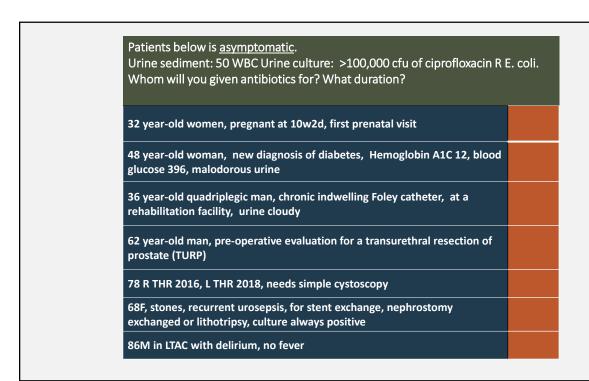
Pallet & Hand. J Antimicrob Chemother 2010; 65s3: s25-33

"Last Resort" Antibiotics

- Ceftolozane-tazobactam (off market)
 - Activity against MDR Pseudomonas aeruginosa
- · Ceftazidime-avibactam
 - Activity against MDR Pseudomonas aeruginosa
 - Activity against some carbapenemresistant Enterobacteriaceae (CRE)
 - Not active against NDM-1 CRE
- Cefiderocol
 - new cephalosporin transported across the outer membrane by the bacterial iron-transport system
- · Imipenem-relebactam
- Colistin
- Polymyxin

Duration of ABX in sepsis of urinary source

De-escalation and duration


- De-escalation: narrower spectrum, when feasible, once AST back
- Responding to therapy (clinical, lab, cultures cleared) + source controlled: consider shorter duration (7-10 days) and transition to oral therapy when possible

Proof of concept study

Seven Versus 14 Days of Antibiotic Therapy for Uncomplicated Gram-negative Bacteremia:
A Noninferiority Randomized Controlled Trial Bacteria Control

	Sho	rt	Lon	0	Risk Difference	Risk Difference
Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
.1 Bacteremia source						
UTI	92	212	88	199	-0.01 [-0.10, 0.09]	+
non-UTI	48	94	56	99	-0.06 [-0.20, 0.09]	-+-
.2 Empirical antibiotic	treatmen	nt				
Covering empirical	112	260	109	242	-0.02 [-0.11, 0.07]	+
Non-covering empirical	28	46	35	56	-0.02 [-0.21, 0.17]	
3 Multi-drug resistan	ce					
MDR	39	58	34	51	0.01 [-0.17, 0.18]	
Non-MDR	101	248	110	247	-0.04 [-0.13, 0.05]	+
						1 1
						-1 -0.5 0 0.5 Favours short treatment Favours long tr

CID 2019:69 (1 October) . Yahav et al

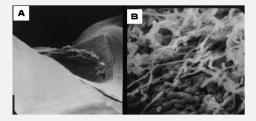
Patients below is <u>asymptomatic</u> . Urine sediment: 50 WBC Urine culture: >100,000 cfu of ciprofloxacin R E.	со
Whom will you given antibiotics for? What duration?	
32 year-old women, pregnant at 10w2d, first prenatal visit	
48 year-old woman, new diagnosis of diabetes, Hemoglobin A1C 12, blood glucose 396, malodorous urin2	
36 year-old quadriplegic man, chronic indwelling Foley catheter, at a rehabilitation facility, urine cloudy	
62 year-old man, pre-operative evaluation for a transurethral resection of prostate (TURP)	
78 R THR 2016, L THR 2018, needs simple cystoscopy	
68F, stones, recurrent urosepsis, for stent exchange, nephrostomy exchanged or lithotripsy, culture always positive	
86M in LTAC with delirium, no fever	

Asymptomatic Bacteriuria

- Bacteriuria in a patients without symptoms of a urinary tract infection
- Screening (and treatment) for asymptomatic bacteriuria is recommended for:
 - Pregnant women at least once, and if positive "periodically"
 - Many, but not all studies, link untreated bacteriuria to preterm birth, low birth weight, perinatal mortality and bacterial sepsis
 - For patients **before TURP & other urologic procedures** where mucosal injuries may occur
 - ? Recent (1 month) renal transplantation

2019: https://www.idsociety.org/practice-guideline/asymptomatic-bacteriuria

Screening and treatment for ASB before non-urologic surgery


- Joint arthroplasty: common practice despite lack of prospective evidence (observational data suggested link between ASB and prosthetic joint infection[PJI])
 - 2 recent prospective RCTs showed that while there may be a link, organisms were discordant (urine and joint), and UTI treatment did not reduce PJI risk
 - Elimination of this practice at one large center had no significant impact on incidence on PJI
- Cardiac Surgery: less available data, but no prospective data to support treating ASB for this indication

Clin Infect Dis (2017) 64 (6): 806, Clin Infect Dis 2014; 59 :41; Clin Orthop Relat Res 2013; 471:3822

Candida UTI

- Ascending or from blood stream? (blood cx if sick)
- Vaginal contamination, colonization or tissue invasion?
- Catheter associated? Adheres well to plastics, less well to bladder epithelium (promoted by E. coli and Klebsiella) – majority of hospitalized patients – no treatment needed
- Retrograde upper tract infection? ISO obstruction?
- Fluconazole preferred but echinocandins, liposomal amphotericin work as well

Not all yeast is Candida; other fungal forms and molds should raise concern for disseminated infection

Catheter-associated UTI (CA-UTI) and Bacteriuria

- The presence, absence, or degree of pyuria should not be used to differentiate CA-ASB from CA-UTI – may be irritative
- Diagnosis should be made clinically
 - Fever, most common, but without localizing findings a challenge to interpret; attribute only when other causes excluded
- Consider prostatitis in symptomatic men
- Focus on prevention
- Treatment of catheter associated UTI (not urinary sepsis):
 - 7 days for most (10-14 if delayed response)
 - 3 days may be considered in a young woman whose catheter was removed
 - Remove or replace catheters at the onset of therapy (especially if in place for >14 days

Tambyah Current opinion in infectious diseases 25.4 (2012): 365 Saint, Sanjay, NEJM (2016): 2111

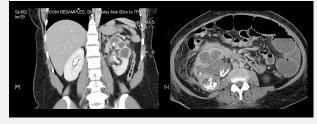
UTI and Asymptomatic bacteriuria in older adults

- Asymptomatic bacteriuria **very common** in elderly men and women (16%-50% in studies, higher if catheterized)
- Older adults with or without bacteriuria often have on-infectious lower tract urinary symptoms (urgency, incontinence, dysuria)
- Nonspecific symptoms (malaise, weakness, altered mental status/delirium) often attributed to clinical UTI concomitant bacteriuria
- The diagnosis of symptomatic UTI remains a significant challenge in the frail elderly; although guidelines available they are not all validated and not adhered to; overtreatment is common
 - Suggested sx: fever, worsening of baseline lower tract sx, upper tract sx

Imaging in UTI

- Goal of imaging: identify complications that require source management: obstruction, abscess/pus, gas (emphysematous)
- Most medical literature recommends against routine imaging in uncomplicated pyelonephritis, unless no improvement 48-72h / clinical concern
- Some urologic guidelines recommend <u>ultrasound</u> to exclude obstruction
- American College of Radiology recommends early imaging for those at complication risks: diabetes or Immunocompromised, history of stones or prior renal surgery, or not responding to therapy

Summary of evidence	LE
Urine culture and antimicrobial susceptibility testing should be performed in all cases of pyelonephritis in addition to urinalysis.	4
A prospective observational cohort study found that radiologic imaging can selectively be applied in adults with febrile UTI without loss of clinically relevant information by using a simple clinical prediction rule.	26
Additional imaging investigations, such as an unenhanced helical computed tomography should be done if the patient remains febrile after 72 hours of treatment or in patients with suspected complications e.g. sepsis.	4


Recommendations	Strength rating
Perform urinalysis (e.g. using a dipstick method), including the assessment of white and red blood cells and nitrite, for routine diagnosis.	Strong
Perform urine culture and antimicrobial susceptibility testing in patients with pyelonephritis.	Strong
Perform imaging of the urinary tract to exclude urgent urological disorders.	Strong

SUMMARY OF RECOMMENDATIONS

- Variant 1: Diagnostic imaging is usually not appropriate for initial evaluation of acute pyelonephritis in the uncomplicated patient.
- Variant 2: CT abdomen and pelvis with IV contrast or CT abdomen and pelvis without and with IV contrast are usually appropriate for imaging complicated patients in the setting of acute pyelonephritis.

Selected Imaging

Urinalysis has excellent negative predictive value for urinary infection in most

Take Home Points

Selected patients with simple cystitis can be treated without studies

Urinalysis has excellent negative predictive value for urinary infection in most

Selected patients with simple cystitis can be treated without studies

Urinalysis has excellent negative predictive value for urinary infection in most

Community and Hospital Drug resistance on the rise – ID can help with antibiotic choices

Take Home Points

Selected patients with simple cystitis can be treated without studies

Community and Hospital
Drug resistance on the
rise – ID can help with
antibiotic choices

Urinalysis has excellent negative predictive value for urinary infection in most

Indications to treat asymptomatic bacteriuria are narrow

Selected patients with simple cystitis can be treated without studies

Community and Hospital
Drug resistance on the
rise – ID can help with

antibiotic choices

Urinalysis has excellent negative predictive value for urinary infection in most

Most funguria requires no treatment. A few do have invasive disease by candida or other fungal organism Indications to treat asymptomatic bacteriuria

Take Home Points

Selected patients with simple cystitis can be treated without studies

Community and Hospital Drug resistance on the rise – ID can help with antibiotic choices Urinalysis has excellent negative predictive value for urinary infection in most

Most funguria requires no treatment. A few do have invasive disease by candida or other fungal organism Indications to treat asymptomatic bacteriuria are narrow

Some urinary sepsis courses could potentially be as short as 7 days

Selected patients with simple cystitis can be treated without studies

Community and Hospital Drug resistance on the rise – ID can help with antibiotic choices Urinalysis has excellent negative predictive value for urinary infection in most

Most funguria requires no treatment. A few do have invasive disease by candida or other fungal organism Indications to treat asymptomatic bacteriuria are narrow

Some urinary sepsis courses could potentially be as short as 7 days

No consensus on early imaging in febrile UTI, use clinical judgement