Managing Patients in the Transition Between Floor and ICU

Rebecca M. Baron, M.D. Pulmonary & Critical Care Medicine Brigham and Women's Hospital

Case 1: Imaging

Disclosures

• Rebecca Baron, MD: Advisory Boards for Genentech and Merck (not relevant to this presentation).

Case 1

- Started on remdesivir, dexamethasone, casirivimab/imdevimab
- On hospital day 2, respiratory status is worse
- RR 30, on 50% face mask
- ABG: pH 7.46, PaCO₂ 33, PaO2 66
- What options can be used to increase respiratory support on the floor?

Case 1

- 47 M landscaper
- PMHx hypertension, Type 2 diabetes, smoker
- Not COVID vaccinated
- Presents with 5 days of dry cough, fever, progressive dyspnea
- Exam: T 38.7 $^{\rm o}{\rm C}$ (101.7 $^{\rm o}{\rm F}$), RR 20, Sat 90% on room air, bibasilar crackles
- ABG on room air: pH 7.42, PaCO_2 36, PaO_2 63
- SARS-CoV-2 PCR positive, CRP 242
- CXR: bilateral infiltrates
- CT chest: ground-glass opacities, worse in bases and periphery

Method	FiO2	Flowrate
	(Approximate)	(L/min)
Non rebreather Mask	60-80%	10-15
Venti Mask	24%	3
	26%	3
	28%	6
	31%	6
	35%	9
	40%	12
	50%	15
Simple Face Mask	35-55%	5-10 lpm
Nasal Cannula	24%	1
	28%	2
	32%	3
	36%	4
	40%	5
	44%	6

High-flow nasal cannula (HFNC)

- 30 to 60 LPM oxygen heated to body temperature at 100% relative humidity
- Dramatically reduces dilution of inspired oxygen by room air
- Washes out dead space in the airways
- Increases tidal volume
- Generates low-level continuous positive airway pressure (CPAP)
- Moistens secretions, improves mucociliary transport
- Greater comfort and adherence
- Limitations: doesn't provide as much positive pressure or reduce the work of breathing as much as non-invasive ventilation; in COVID, does it help prevent intubation, or "delay.

Case 1 continued

- Increasing O2 requirements to 10L
- Continued desaturations and increased work of breathing
- Next steps?
- High flow NC vs NIPPV?

Non-invasive ventilation: bilevel intermittent positive air pressure (BiPAP)

- Baseline positive pressure
 Ventilates areas of atelectasis, and prevents other areas from becoming atelectatic
- Inspiration raises the system to a higher positive pressure, reducing the work of breathing
- May also provide supplemental oxygen
- Limitations: uncomfortable, may be poorly tolerated, unclear benefit vs. harm in ARDS

Noninvasive positive pressure ventilation (NIPPV)

- Supportive data for:
 - Acute COPD exacerbation--greatest benefit
 - Ventilator weaning adjunct in COPD
 Acute cardiogenic pulmonary edema
 - Acute cardiogenic pullificitary edema
 Hypoxemic respiratory failure, immunocompromised host in
 - early but not later studies
- Why?
- Improved alveolar ventilation
- Reduced work of breathing
- Relieving fatigued respiratory muscles
- Outcomes
 - Decreased infections
- Fewer intubations

NIPPV, cont'd

- · Facemask: better effect, less comfort
- Need "protocol-driven" initiation, with careful monitoring, esp in 1st 1-2 hours
- · Contraindications:
 - Mental status, hemodynamics, facial deformity, upper airway obstruction, SECRETIONS, aspiration risk
 - Concern re: aerosolization in COVID; unclear benefit vs.
 - harm in lung injury

HFNC vs BiPAP in clinical trials

In a meta-analysis of 29 RCTs, HFNC was associated with lower need for intubation, lower mortality, and greater comfort than non-invasive ventilation

Ann Intern Med 2021;174:952

Case 1 continued

- Started on high flow NC
- Ongoing desaturations and escalating O2 requirement
- Anesthesia called for intubation

What is the optimal timing for intubation in the patient with deteriorating respiratory status?

Case 1 conclusion

- Intubated for 2 weeks with slow improvement
- Required trach
- Discharged to a ventilator weaning rehab facility
- Now being followed in our "Long-haul COVID clinic"

As an example: 2019 AHA update: Airways

- Data isn't clear when/how to intubate during a code situation due to varying patient and provider circumstances.
- Use best judgement based on situation and provider expertise.
- It is suggested that proficiency be encouraged to acquire and maintain airway insertion skills for relevant personnel.

Case 2

- 72 M PMHx type 2 diabetes on metformin
- Brought in with confusion, hypoglycemia
- Given D50W in the field by EMS for glucose 40 mg/dl (2.2 mmol/L)
- Exam: T 92°F (33.3°C), P 90, BP 65/40, RR 20, Sats 97% RA
- Also notable for jaundice, crackles at both lung bases, tender palpable liver tip 5 cm below costal margin

Other considerations in COVID management

- Other Anti-inflammatory agents (e.g., TOCI, JAK inhibitors)
- Awake proning
- Anti-coagulation (prophylaxis level, consideration of therapeutic in "moderate COVID" (NEJM 2021))

Case 2

Laboratory workup: WBC 18, hgb 8.1, platelet 46K Na 124, K 5.2, bicarb 11, BUN 60 mg/dl, Cr 4.0 mg/dl (354 µmol/L) LFTs: total bilirubin 16 mg/dL, AST 578, ALT 435 INR 4.8, D-dimer >2000 Haptoglobin less than assay

Next steps? Treatment of the patient's hypotension?

What is Sepsis (2001-15)?

- <u>Systemic Inflammatory</u> <u>Response Syndrome</u> (SIRS):
 - Temp >38°C or <36°C
 Heart Rate > 90 bpm

 - Resp Rate > 20/min
 - WBC >10000, <4000, or Bandemia>10%
- <u>Sepsis</u>: SIRS + Infection <u>Severe Sepsis</u>: Sepsis+
 Organ Dysfunction
- <u>Septic Shock</u>: Sepsis+Refractory Hypotension

Special Communication | CARING FOR THE CRITICALLY ILL PATIENT The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) Mervyn Sreger, MD, FRCP, Clifford S. Deutschman, MD, MS; Christopher Warren Seymour, MD, MS; Manu Shankar Hari, MS;, MD, FFICM; Djillail Annen, MD, PibD, Michael Bauer, MD, Bruido Bellonn, MD, Gordon B. Bernard, MD, Jean-Daniel Chche, MD, PibD, Corgik L. Coopersmit, MD, Rohard S. Hochtaski, MD, Michael M, Levil, Dicher C. Manhull, MD, Greg S. Martin, MJ, MS; Steven M. Opal, MD, Gordon D. Ruberfeld, MD, MS; Tom van der Poll, MD, PhD; Jean-Louis Vincent, MD, PhD, Derek C. Angus, MD, MPH qSOFA

- Out of hospital, ED, Ward settings Worse outcomes predicted from sepsis with 2 of:
- Respiratory Rate ≥ 22/min
 - Altered mental status (GCS ≤ 13)
- SBP ≤ 100 mmHg
- Ongoing inquiry as to its validation • . LESS SENSITIVE but MORE SPECIFIC than SIRS

for sepsis screening.

The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) Mervyn Singer, MD, FRCP, Clifford S. Deutschman, MD, MS, Christopher Warren Seymour, MD, MSc, Manu Shankar-Hari, MSc, MD, FFCJM, Djillai Annana, MD, Pib, Michael Bauer, MD, Rinaldo Belloma, MD, Gordon B, Bernard, MD, Jean-Daniel Chiche, MD, Pib, Criggli M, Coopersmith, MD, Richard S, Hordskins, MD Michael ML, Levy MD, Joher C, Manhull MD, Greg SJ, Martin MJ, MS-Steven M. Opal, MD, Gordon D. Rubenfeld, MD, MS. Tom van der Poll, MD, PhD; Jean-Louis Vincert, MD, PhD, Derek C, Argus, MD, MPH SEPSIS: (>10% mortality) · Life-threatening organ dysfunction Caused by dysregulated response to infection ٠ • Increase SOFA score of ≥2 SHOCK: (>40% mortality) • Vasopressors for MAP≥65 mmg Hg ٠

Lactate>2 mmol/L In absence of hypovolemia ٠

Special Communication | CARING FOR THE CRITICALLY ILL PATIENT

JAMA. 2016;315(8):801-810. doi:10.1001/jama.2016.0

Points	0	1	2	3	4
PaO2/FiO2	≥400	<400	<300	<200 + mechanical ventilation	<100 + mechanical ventilation
Platelets	≥150	<150	<100	<50	<20
Bilirubin	<1.2	1.2-1.9	2.0-5.9	6.0-11.9	>12.0
Blood Pressure	MAP ≥70	MAP <70	Dopamine <5 or Dobutamine	Dopamine 5.1-15 or Epinephrine <0.1 or Norepinephrine <0.1	Dopamine >15 or Epinephrine >0.1 or Norepinephrine >0.1
Glasgow Coma Scale	15	13-14	10-12	6-9	<6
Creatinine	<1.2	1.2-1.9	2.0-3.4	3.5-4.9 or <500cc urine/d	>5.0 or <200cc urine/d

Fluid Response Evaluation in Sepsis Hypotension and Shock A Randomized Clinical Trial	Check for updates
Ivor S. Douglas, MD; Philip M. Alapat, MD; Keith A. Corl, MD; Matthew C. Exline, MD, MHH; Lui G. Forni, PhD; Andre L. Holder, MD; David A. Kaufman, ND; Atram Khan, ND; McHel M. L. Gregory S. Martin, ND; Jemifer A. Shahajan, PhD; Eric Seelev, RD; Weisel, H. Mett, MD; Jeremy A. Weingurten, MD; Mark Williams, MD; and Douglas M. Hansell, MD	evy, MD;
Fluid responsiveness assessed by Passive Raise to guide fluid resuscitation (n=83) v (n=41). With intervention:	Leg s. Usual Care
 Lower net positive fluid balance Lower risk of renal replacement and me 	echanical
ventilation	st 2020

FLUIDS in SEPSIS BOTTOM LINE:

Bolus crystalloid, but don't overdo it.

Find your favorite way(s) to target resuscitation.

Other considerations in Babesia management

- Antibiotics (Clinda/quinine)
- Exchange transfusion
 - End-organ dysfunction
 - DIC
 - Elevated parasitemia
 - Significant hemolysis
 - Asplenia

Case 2 continued

- Course complicated by ARDS, AKI requiring HD, delirium
- Babesiosis improves with exchange transfusion, antibiotics with decreasing parasitemia
- Requires trach for prolonged chronic respiratory failure
- Hemodynamically stable but still requiring a lot of care:

 - Delirious
 Increased secretions requiring frequent suctioning · Extremely weak
 - EOL discussions with family have been challenging
- Transfer to floor!

Case 2 continued

• As hospitalists what are the most common challenges with transitions between floor and ICU?

Take Home Messages

- Wide spectrum of illness from floor to ICU and back
- Multiple options exist for O2 delivery and respiratory support
- Early recognition and treatment of sepsis is key
- Judicious fluid resuscitation (avoiding volume overload) is important
- Close communication between floor and ICU is critical for optimal management