Evidence-Based Management of Acute Coronary Syndromes

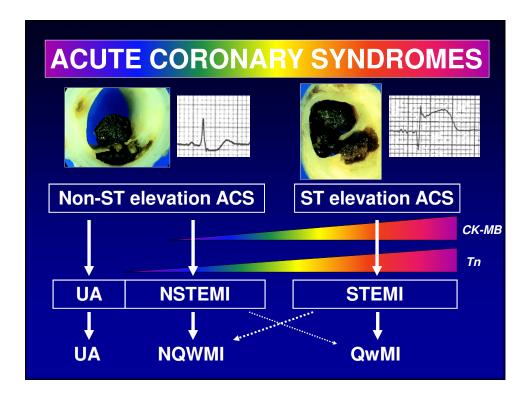
Update in Hospital Medicine

October 2021

Marc S. Sabatine, MD, MPH

Chairman, TIMI Study Group Lewis Dexter, MD, Distinguished Chair in Cardiovascular Medicine, BWH Professor of Medicine, Harvard Medical School

Disclosures


Research Grant Support through BWH:

Amgen; Anthos Therapeutics; AstraZeneca; Daiichi-Sankyo; Eisai; IONIS; Medicines Company; MedImmune; Merck; Novartis; Pfizer

Scientific Advisory Boards & Consulting:

Amgen; AstraZeneca; Fibrogen; Intarcia; Merck; Moderna; Novo Nordisk

Investigational, unlabeled and/or unapproved uses of drugs or devices will be discussed in this presentation.

H&P

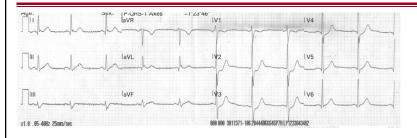
History

- Cardinal sx of angina
 - 1. Substernal chest discomfort w/ characteristic quality (pressure) & duration (minutes)
 - 2. Provoked by physical exertion or emotional stress
 - 3. Relieved by rest of NTG
- Typical angina: All 3 features
- Atypical angina: 2 of 3 features
- Noncardiac chest pain: 0 or 1 feature

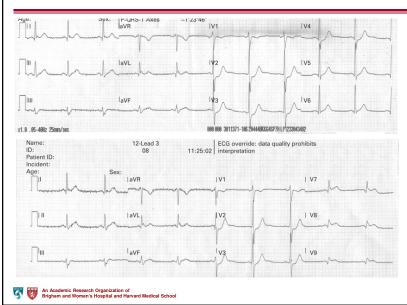
Physical exam

- Pain not reproducible
- Signs of vascular disease
- Signs of HF

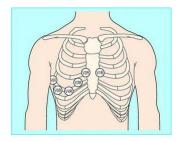
ECG

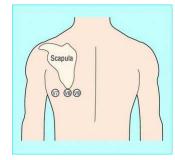

- · What to look for
 - STE or LBBB not known to be old
 - ST depression ≥0.5 mm; TWI >1 mm
 - Coronary distribution
- · What else to look for
 - Q waves or poor R-wave progression (PRWP)
- How to look for it
 - 12-lead ECG w/in 10 mins of presentation
 - Compare to prior ECGs
- Obtain serial ECGs (initial ⊕ in <50% ACS Pts)

 → Obtain serial ECGs (initial ⊕ in <50% ACS Pts)



Where is the Lesion?


Where is the Lesion?



ECG Special Placement

Right-sided leads (V_{4R}) Posterior leads (V₇-V₉)

To diagnose RV infarct in setting of inferior STEMI (due to prox RCA occlusion)

To diagnose posterior MI (due to LCx occlusion) in setting of concerning sx and either ant. ST depressions or normal ECG

Ruling In & Ruling Out MI

Case #1

75 yo M p/w chest pain x 15 minutes that started 3 hours ago, now resolved.

ECG without abnormalities.

Your high-sensitivity troponin testing strategy is:

- A. Check now; if undetectable, discharge to home
- B. Check now and in 1 hour; if both <99th %ile and no change over time, discharge to home
- C. Check now and 3-6 hours after sx onset; if both <99th %ile, discharge to home

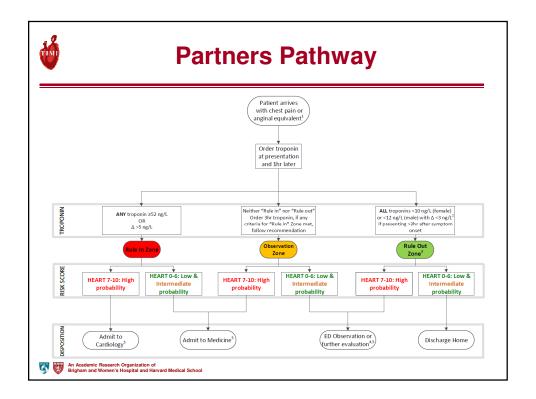
Ruling In & Ruling Out MI

Case #1

75 yo M p/w chest pain x 15 minutes that started 4 hours ago, now resolved.

ECG without abnormalities.

Your high-sensitivity troponin testing strategy is:


- A. Check now; if undetectable, discharge to home
- B. Check now and in 1 hour; if both <99th %ile and no change over time, discharge to home
- C. Check now and 3-6 hours after sx onset; if both <99th %ile, discharge to home

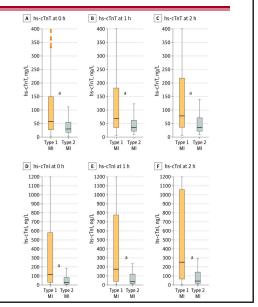
ACS: Biomarkers

Era	Assay	Measure at presentation +
Ancient History (1980s)	CK-MB	q8 hrs × 3
Dawn of modern cardiac markers (1990s)	Troponin	q8 hrs × 3
Recent past	Troponin	3-6 hrs after sx onset
Now	hs-Troponin	\pm 1-3 hrs later (depending on time from sx onset to presentation) Examine absolute and Δ

4th Universal Definition of MI

Definition	Criteria	
Myocardial Injury	Tn >99th %ile (acute if rise and/or fall)	
Acute Myocardial Infarction	Acute myocardial injury + clinical evidence of acute myocardial ischemia (eg, sx, ECG, imaging)	
Type 1	<u>Atherothrombosis</u> (plaque rupture or erosion)	
Type 2	Imbalance between myocardial O ₂ supply & demand <u>unrelated</u> to acute atherothrombosis	
Type 3	Cardiac death w/ sx + ECG Δ s before Tn available	
Type 4	PCI-related (clinical + Tn >5× 99 th %ile)	
Type 5	CABG-related (clinical + Tn >10× 99th %ile)	
An Academic Research Organization of	JACC 2018	

Type 2 MI & Myocardial Injury


- Type 2 MI = MI not due to ACS
 - → myocardial perfusion
 - Coronary artery spasm, embolism, dissection
 - · HoTN, profound sustained bradycardia, severe anemia
 - - · Profound sustained tachycardia; HTN
- Myocardial Injury = ↑ Tn w/o clinical s/s ischemia
 - Heart failure, myocarditis, CMP, Takotsubo
 - Cardiac ablation, defibrillation, cardiac contusion
 - PE, PHT
 - Stroke, SAH, critical illness

Type 1 vs. 2 MI

Largely a clinical diagnosis ...

JAMA Cardiol. Published online April 21, 2021

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

ACS Likelihood

Feature	High	Intermediate	Low
History	Chest or L arm pain or discomfort as chief sx ≈ prior doc angina Known h/o CAD	discomfort as chief sx • Age >70 y	Prob ischemic sx w/o intermed-likelihood characteristics Recent cocaine use
Exam	Transient MR murmur, HoTN, diaphoresis, pulm edema, or rales	Extracardiac vascular disease	Chest discomfort reproduced by palp
ECG	New, or presumably new, transient ST deviation (≥1 mm) or TWI (≥2 mm) in multiple precordial leads	ST depression 0.5-1 mm or TWI >1 mm	Tw flattening or inversion <0.1 mV in leads w/ dominant R waves Normal ECG
Biomarkers	Elevated	Normal	Normal

ACC/AHA 2007 UA/NSTEMI Guidelines. Circulation 2007;116:e148

Low probability ACS Pts

Who?

- Resolution of sx (and no hemodynamic or electrical instability)
- Normal serial ECGs
- Normal serial cardiac troponins

· Reasonable next steps

- Noninvasive functional or imaging test
- Timing
 - · Before d/c or
 - W/in 72 hrs after d/c (if very low risk Pt TIMI Risk Score 0); ASA, NTG
- If can exercise & interpretable ECG: exercise ECG stress test
- Vasodilator if cannot exercise
- Imaging if ECG uninterpretable
- Coronary CT angiography also reasonable

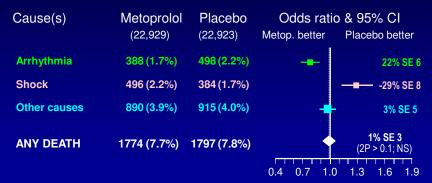
Not low-probability ACS

Who?

- Concerning history
- Persistent sx
- Hemodynamic or electrical instability
- Ischemic ECG
- Elevated cardiac troponin

Next steps

- Consult cardiology
- Anti-ischemic therapy
- Invasive (ie, coronary angiography) or conservative (stress test) strategy
- Antithrombotic therapy
- Risk factor modification


Anti-Ischemic Therapy

- Nitrates
 - Sx relief; no mort benefit (GISSI-3 & ISIS-4)
- Beta-blockers
 - $-\downarrow$ ischemia, \downarrow D/MI (in AMI trials)
 - PO (not IV) and only if not in HF or at risk for shock
- Calcium channel blockers
 - If ischemia despite max βB or βB contra.
- Morphine
 - Pain, CHF, agitation; don't mask angina
- Oxygen

COMMIT: Effects of METOPROLOL on Death

45,852 Patients p/w AMI <u>w/in 24 hrs;</u> ASA; lytic therapy (\sim 1/2) Randomized to metoprolol (5 mg IV q 5 min x 3, 50 mg PO q 6 hr x 4, then 200 mg XL qd) or placebo

COMMIT Collaborative Group. Lancet. 2005;366:1622.

Beta-Blockers in ACS

Class I

Oral βB should be initiated in the <u>first 24 hrs</u> if <u>w/o</u> any of following:

- 1) heart failure,
- 2) low output state,
- 3) \(\gamma\) risk for cardiogenic shock, or
- 4) other relative contraindications (PR >0.24 sec, 2° or 3° AVB, active asthma, or reactive airways disease)

Class III Harm

IV βB at time of presentation if risk factors for shock

Risk factors for cardiogenic shock (the greater the number of risk factors present, higher the risk) are: age >70 yrs, SBP <120 mm Hg, HR >110 bpm or <60 bpm, and ↑ time since onset of symptoms.

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

Circ 2013;127:e362

Which NSTEACS Go to the Cath Lab?

Case #2

72 yo F p/w chest pain that started 3 hours ago.

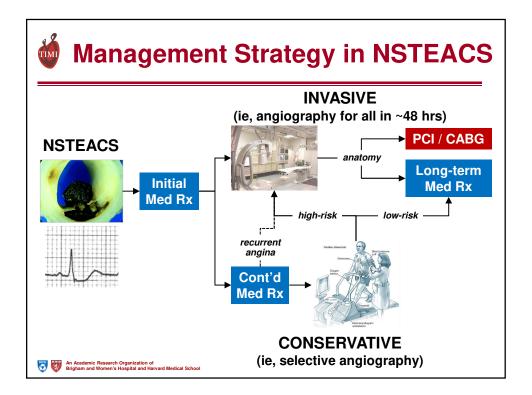
ECG shows inferior ST segment depressions. Troponin elevated.

Now chest pain free and ECG normalized.

- A. Stress test now
- B. Stress test in 48 hours
- C. Cath immediately
- D. Cath within 24 hours
- E. Cath within 72 hours

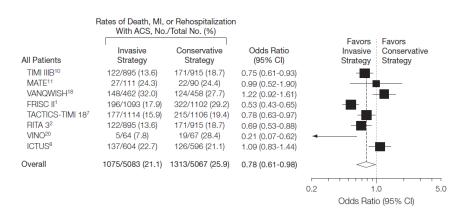
Which NSTEACS Go to the Cath Lab?

Case #2

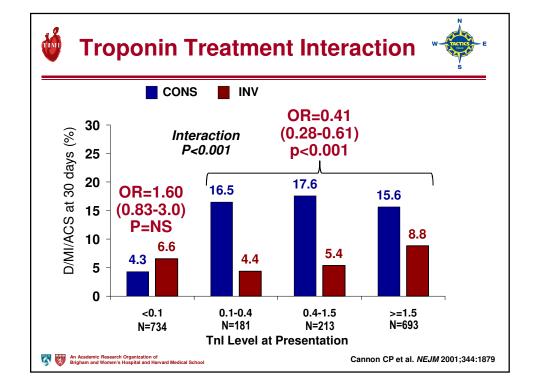

72 yo F p/w chest pain that started 3 hours ago.

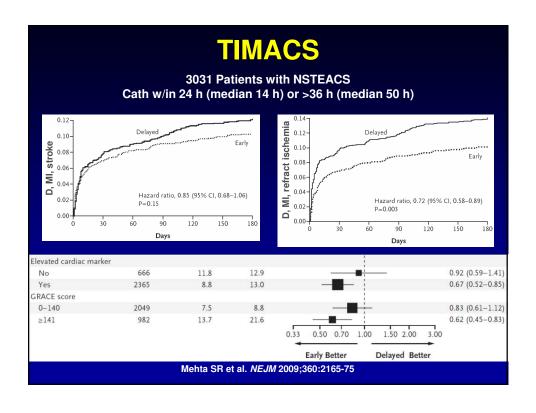
ECG shows inferior ST segment depressions. Troponin elevated.

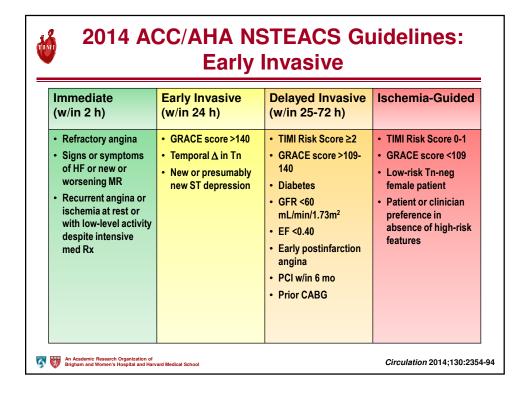
Now chest pain free and ECG normalized.


- A. Stress test now
- B. Stress test in 48 hours
- C. Cath immediately
- D. Cath within 24 hours
- E. Cath within 72 hours

Benefit of INV vs CONS Strategy




INV Strategy reduces cardiac complications by ~20%, particularly recurrent ACS



An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

O'Donoghue M, et al. JAMA 2008;300:71-80

Noninvasive Testing Options

- Pt needs to be free of ischemia for 12-24 hours
- Testing options
 - If can exercise & interpretable ECG: exercise ECG stress test
 - Vasodilator if cannot exercise
 - Imaging if ECG uninterpretable or cannot exercise [also reasonable in all given intermediate-to-high risk of CAD]
 - Coronary CT angiography

Antithrombotic Therapy

Case #3

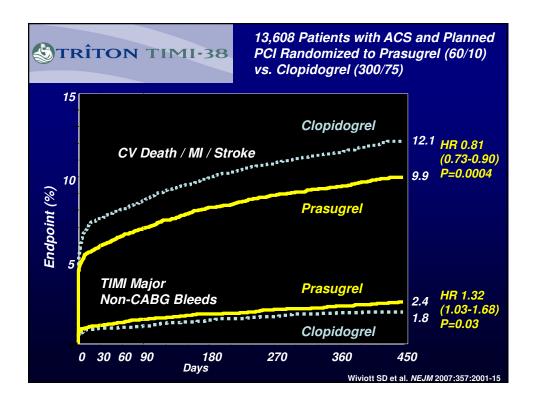
65 yo M p/w chest pain that started 2 hours ago. ECG shows anterior ST segment depressions. Troponin elevated. Has received aspirin.

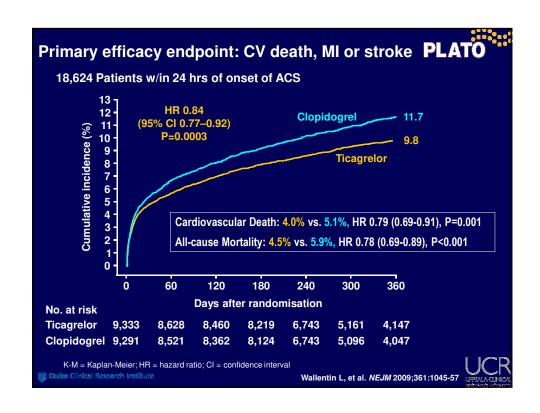
- A. Add an oral P2Y₁₂ inhibitor: clopidogrel
- B. Add an oral P2Y₁₂ inhibitor: prasugrel
- C. Add an oral P2Y₁₂ inhibitor: ticagrelor
- D. Add an intravenous P2Y₁₂ inhibitor: cangrelor
- E. Add an intravenous GP IIb/IIIa inhibitor: eptifibatide

Antithrombotic Therapy

Case #3

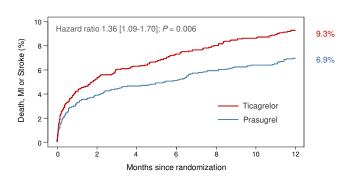
65 yo M p/w chest pain that started 2 hours ago. ECG shows anterior ST segment depressions. Troponin elevated. Has received aspirin.


- A. Add an oral P2Y₁₂ inhibitor: clopidogrel
- B. Add an oral P2Y₁₂ inhibitor: prasugrel
- C. Add an oral P2Y₁₂ inhibitor: ticagrelor
- D. Add an intravenous P2Y₁₂ inhibitor: cangrelor
- E. Add an intravenous GP IIb/IIIa inhibitor: eptifibatide



Antiplatelet Therapy Acutely

- Start with COX Inhibitor (ie, aspirin)
- Almost always add: P2Y₁₂ Inhibitr (eg, ticagrelor or prasugrel preferred over clopidgrel)
- Sometimes also add (typically in cath lab): glycoprotein llb/llla inhibitors (eg, abciximab, eptifibatide, tirofiban)



Prasugrel vs. Ticagrelor

ISAR-REACT 5: 4018 Pts w/ ACS

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

NEJM 2019;epub

P2Y₁₂ Inhibitor Pretreament?

(ie, before angiography)

PROS

- How clopidogrel & ticagrelor (but not prasugrel) were studied
- Earlier platelet inhibition *should* ↓ risk of further ischemic events
- Ensures dual antiplatelet therapy fully in effect during PCI

CONS

- RCTs of preRx have not shown clinical benefit
- PreRx does ↑ risk of bleeding
- If anatomy warrants CABG, could delay surgery
- Ticagrelor & prasugrel fairly fast acting (onset **30 mins)**
- IV P2Y₁₂ inhib available

Anticoagulants in NSTEACS

INVASIVE STRATEGY

- UFH
- Bivalirudin
- Enoxaparin (LMWH)
- Discontinue after uncomplicated PCI

CONSERVATIVE STRATEGY

- UFH (Rx for 48 hrs)
- Enoxaparin (LMWH) (Rx until end of hosp, up to 8 days)

ST-Elevation MI (STEMI)

- Consider immediate reperfusion therapy
- In whom?
 - Within 12 hrs of sx onset, or
 - 12-24 hrs after sx onset if clinical or ECG evidence of ongoing ischemia
- How?
 - Primary PCI (including transfer to PCI-capable hosp if door-in to door-out time will be <30 min & 1st med contact to PCI anticipated <120 min)
 - Fibrinolytic (barring contraindications*)

^{*}Relative: severe HTN; stroke; prolonged CPR; recent bleed, surgery or trauma; noncompressible vasc _puncture; pregnancy; current use of anticoagulants

^{*}Absolute: prior ICH; intracranial neoplasm, aneurysm, or AVM; stroke or head trauma w/in 3 mos; active internal bleeding or diathesis; suspected AoD

Revascularization in STEMI

Case #4

65 yo M p/w STEMI, w/ inferior ST segment elevations.

Brought for immediate coronary angiography and found to have occluded RCA, which is successfully stented and Pt doing well.

Also noted to have 80% mid LAD lesion and a 50% LCx lesion.

- A. Low level stress test before discharge
- B. Stent the LAD lesion during this hospitalization or w/in 6 wks
- C. Stent the LAD & LCx lesions now

Revascularization in STEMI

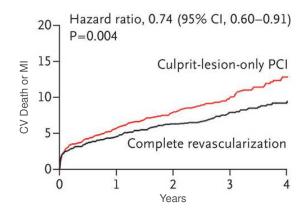
Case #4

65 yo M p/w STEMI, w/ inferior ST segment elevations.

Brought for immediate coronary angiography and found to have occluded RCA, which is successfully stented and Pt doing well.

Also noted to have 80% mid LAD lesion and a 50% LCx lesion.

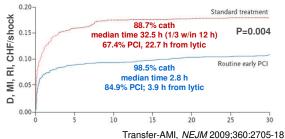
- A. Low level stress test before discharge
- B. Stent the LAD lesion during this hospitalization or w/in 6 wks
- C. Stent the LAD & LCx lesions now



Preventive PCI in STEMI

COMPLETE: 2016 Pts w/ STEMI + MVD

Revasc of all signif lesions (≥70% or 50-69% w/ FFR ≤0.80) w/in 45 days vs. culprit only


An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

Mehta et al. NEJM 2019;epub

What To Do after Fibrinolysis?

- If it fails (persistent STE [<50% resolution] or sx, development of shock, evidence of infarct-related artery reocclusion): rescue PCI
- · If it succeeds:
 - Non-invasive ischemia testing (ie, stress test), OR
 - Transfer high-risk pts w/in 3-24 hrs for elective PCI (high-risk = anterior MI, inferior MI w/ low EF or RV infarct, extensive STE or LBBB, HF, hypotension or tachycardia)
- 1059 high-risk STEMI Pts Rx'd with lytic
- Rand. to immed transfer w/ PCI w/in 6 h or rec for cath w/in 2 wks (earlier if needed)

Long-Term Antithrombotic Therapy

Case #5

64 yo M p/w NSTEMI. History of prior MI and diabetes.

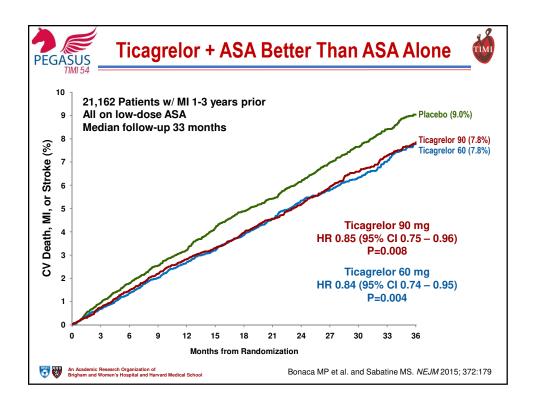
Drug-eluting stent placed in LAD.

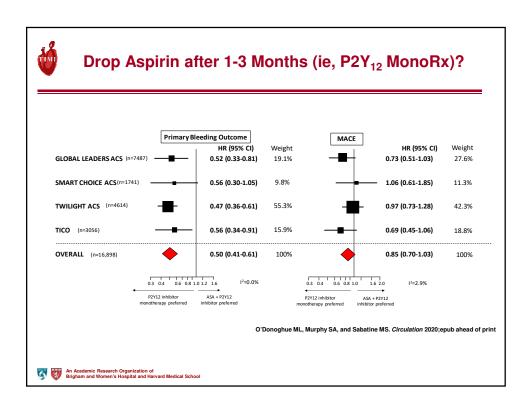
For his long-term anti-platelet regimen, you would recommend:

- A. ASA + P2Y₁₂ inhibitor for 30 days
- B. ASA + P2Y₁₂ inhibitor for 1 year
- C. ASA + P2Y₁₂ inhibitor for as long as tolerated if high ischemic risk and low bleeding risk
- D. ASA + $P2Y_{12}$ inhibitor for 3 months and then $P2Y_{12}$ inhib. monoRx

Long-Term Antithrombotic Therapy

Case #5


64 yo M p/w NSTEMI. History of prior MI and diabetes.


Drug-eluting stent placed in LAD.

For his long-term anti-platelet regimen, you would recommend:

- A. ASA + P2Y₁₂ inhibitor for 30 days
- B. ASA + P2Y₁₂ inhibitor for 1 year
- C. ASA + P2Y₁₂ inhibitor for as long as tolerated if high ischemic risk and low bleeding risk
- D. ASA + $P2Y_{12}$ inhibitor for 3 months and then $P2Y_{12}$ inhib. monoRx

Duration of P2Y12 Inhibition?

- P2Y₁₂ inhibitor + ASA compared w/ ASA alone
 - ↓↓ MACE over 30 days, 1 year, and 3 years
 - ↑ bleeding
- P2Y₁₂ inhibitor compared w/ P2Y₁₂ inhibitor + ASA
 - Drop ASA 1-3 months after ACS
 - = MACE over 1 year; ↓↓ bleeding
- · Therefore:
 - Reasonable to start with DAPT
 - After 3 months, transition to P2Y₁₂ inhibitor monotherapy (ideally ticagrelor) longterm
 - Temper decision based on ischemic and bleeding risk
 - · High ischemic risk: prior MI, multivessel CAD, polyvasc disease, DM, CKD
 - High bleeding risk: ICH, h/o bleeding, anemia, cirrhosis, malignancy

Triple Therapy

Case #6

72 yo F w/ HTN, DM, prior stroke p/w NSTEMI.

2 drug-eluting stents placed in proximal LAD.

On aspirin and ticagrelor.

Develops AF next day.

What regimen do you discharge her on:

- A. Warfarin (INR 2-3), aspirin and ticagrelor
- B. Full dose NOAC, aspirin, and clopidogrel
- C. Full dose NOAC and clopidogrel
- D. Reduced dose NOAC and clopidogrel

Triple Therapy

Case #6

72 yo F w/ HTN, DM, prior stroke p/w NSTEMI.

2 drug-eluting stents placed in proximal LAD.

On aspirin and ticagrelor.

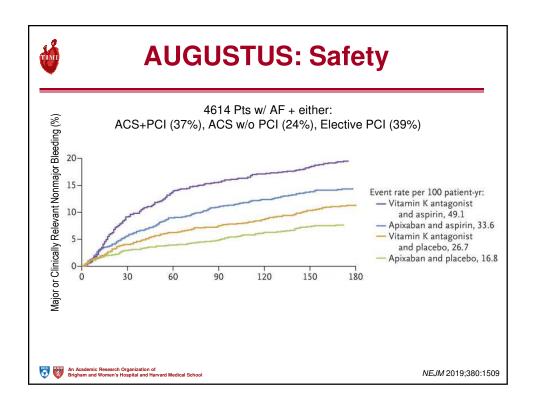
Develops AF next day.

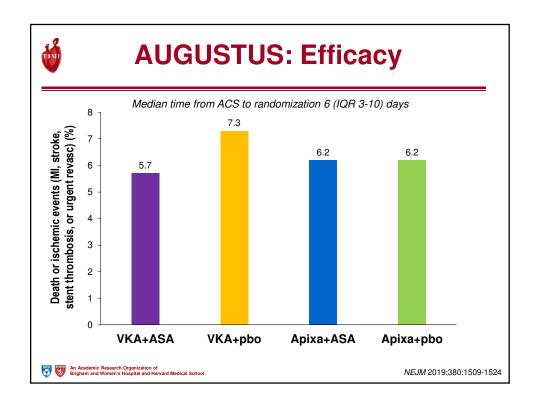
What regimen do you discharge her on:

- A. Warfarin (INR 2-3), aspirin and ticagrelor
- B. Full dose NOAC, aspirin, and clopidogrel
- C. Full dose NOAC and clopidogrel
- D. Reduced dose NOAC and clopidogrel

Data from RCTs of Triple Rx

Control arm: warfarin + ASA + P2Y12 inhibitor


Exp'tal arms: full or reduced-dose DOAC


with or without ASA

- Eliminating ASA (± ↓ dose of DOAC) ↓ bleeding vs. triple Rx w/ warfarin
- Some regimens w/o ASA had numerically ↑ rates of MI vs. regimens w/ ASA
- Stent thrombosis is rare (<1%)
- Regimens w/ reduced-dose DOACs had numerically ↑ rates of ischemic stroke vs. regimens w/ warfarin

Lancet 2013;381:1107; NEJM 2016;375:2423 & 2017:377:1513; & 2019;380:1509

Lipid-Lowering Therapy

Case #7

64 yo M w/ h/o NSTEMI 2 years ago now p/w NSTEMI.

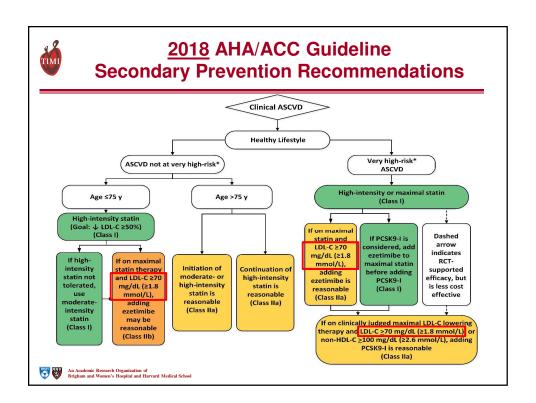
Drug-eluting stent placed in LAD. 50% lesions in RCA and LCx.

LDL-C on admission (not on any lipid-lowering Rx) was 180 mg/dL. Started on atorva 80 mg. What else would you recommend?

- A. Target LDL-C reduction of 50%
- B. Target LDL-C of 70 mg/dL
- C. Add ezetimibe
- D. Add PCSK9 inhibitor
- E. Add ezetimibe and/or PCSK9i to get LDL-C <70 (eg, ≤40 mg/dL)

Lipid-Lowering Therapy

Case #7


64 yo M w/ h/o NSTEMI 2 years ago now p/w NSTEMI.

Drug-eluting stent placed in LAD. 50% lesions in RCA and LCx.

LDL-C on admission (not on any lipid-lowering Rx) was 180 mg/dL. Started on atorva 80 mg. What else would you recommend?

- A. Target LDL-C reduction of 50%
- B. Target LDL-C of 70 mg/dL
- C. Add ezetimibe
- D. Add PCSK9 inhibitor
- E. Add ezetimibe and/or PCSK9i to get LDL-C <70 (eg, ≤40 mg/dL)

2019 ESC Dyslipidemia Guidelines

Recommendations	Classa	Levelb
In secondary prevention patients at very high risk ^c , an LDL-C reduction of at least 50% from baseline ^d and an LDL-C goal of < 1.4 mmol/L (< 55 mg/dL) are recommended. ^{33-35, 119, 120}	I	A

°Prior ACS, stable angina, coronary revascularization, stroke, TIA, PAD

For patients with ASCVD who experience a second vascular event within 2 years (not necessarily of the same type as the first event) while taking maximally tolerated statin-based therapy, an LDL-C goal < 1.0 mmol/L (< 40 mg/dL) may be considered. 119, 120

β-blockers, ACEI/ARB, MRA

· Beta-blockers

- Oral BB initiated w/in 1st 24 hrs if w/o:
 - signs of HF; evidence of low-output state; ↑ risk of cardiogenic shock
 - other contraindication (PR >0.24 sec, 2/3º heart block w/o PPM, active asthma, reactive airway disease)
- If stabilized HF, metoprolol succinate, carvedilol, bisoprolol
- ACEI (or ARB if cannot tolerate ACEI)
 - LVEF <40%, or
 - HTN, diabetes, or stable CKD
- MRA
 - If on ACEI/ARB & BB; and
 - Cr ≤2-2.5, K ≤5; and
 - LVEF <40%, diabetes, or HF

Circulation 2014:130:2354-94

Summary

- · Diagnose ACS using H&P, 12-lead ECG, troponin
- · Anti-ischemic Rx: beta-blocker, nitrates
- For STEMI: select Primary PCI vs Lytic
- For UA/NSTEMI: select Invasive vs. Conservative Strategy
 - Tend to use INV strategy for higher risk patients (eg, Tn positive)
- Select Antiplatelet Regimen
 - ASA
 - + P2Y₁₂ Inhibitor: ticagrelor or prasugrel (or clopidogrel)
 - ? + GP IIb/IIIa inhibitor (typically at time of PCI)
- Select Anticoagulant: UFH, LMWH, bivalirudin, or fondaparinux
- Long-term therapy
 - ASA, P2Y₁₂ inhib (? indefinitely if tolerated), β B, statin (\pm EZE \pm PCSK9i)
 - ? ACEI, ? Aldo inhib

Disclosures

Research Grant Support through BWH:

Amgen; Anthos Therapeutics; AstraZeneca; Daiichi-Sankyo; Eisai; IONIS; Medicines Company; MedImmune; Merck; Novartis; Pfizer

Scientific Advisory Boards & Consulting:

Amgen; AstraZeneca; Fibrogen; Intarcia; Merck; Moderna; Novo Nordisk

Investigational, unlabeled and/or unapproved uses of drugs or devices will be discussed in this presentation.

