# VariantPlex<sup>®</sup> Myeloid NGS panel validation study



# Overview

Hematologic malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and myeloproliferative neoplasms (MPN) are oligoclonal disorders caused by germline or acquired genetic abnormalities in hematopoietic cells.<sup>1</sup> Testing based on targeted next-generation sequencing (NGS) of the genes associated with these disorders can help identify somatic mutations.<sup>2</sup> This information can be clinically useful in diagnosis, prognostic risk stratification, treatment guidance, and minimal residual disease (MRD) detection and monitoring.<sup>1</sup>

Validated by Genosity, the VariantPlex<sup>®</sup> Myeloid NGS panel quantitatively detects and characterizes single nucleotide variants (SNVs), copy number variations (CNVs), as well as insertions and deletions (indels) in 73 genes linked to myeloid malignancies. Assessed accuracy via study with an orthogonal method, this panel has greater than 99.99% analytic sensitivity and specificity for detecting SNVs and small indels with allele frequencies equal to or greater than 5%.

## Introduction

With NGS, the evolving fields of cancer genomics and biomarker-based therapeutics have led to the development of targeted, disease-specific gene panels to identify mutations. Genosity performed the validation for Invitae's VariantPlex Myeloid NGS panel. Genes covered in this panel are: ABL1, ANKRD26, ASXL1, ATRX, BCOR, BCORL1, BRAF, BTK, CALR, CBL, CBLB, CBLC, CCND2, CDKN2A, CEBPA, CSF3R, CUX1, CXCR4, DCK, DDX41, DHX15, DNMT3A, ETNK1, ETV6, EZH2, FBXW7, FLT3, GATA1, GATA2, GNAS, HRAS, IDH1, IDH2, IKZF1, JAK2, JAK3, KDM6A, KIT, KMT2A, KRAS, LUC7L2, MAP2K1, MPL, MYC, MYD88, NF1, NOTCH1, NPM1, NRAS, PDGFRA, PHF6, PPM1D, PTEN, PTPN11, RAD21, RBBP6, RUNX1, SETBP1, SF3B1, SH2B3, SLC29A1, SMC1A, SMC3, SRF2, STAG2, STAT3, TET2, TP53, U2AF1, U2AF2, WT1, XPO1, and ZRSR2. Table 1 (on pages 3–4) shows prognostic, therapeutic or diagnostic associations of the genes and biomarkers covered in this panel.

# Materials and methods

This validation study assessed accuracy, precision and reproducibility, limit of detection, and reportable range. It follows guidelines and recommendations for NGS and somatic testing.<sup>3-7</sup> Automated quality control checks have been reported such as sample accessioning, DNA isolation, library preparation, target capture, and sequencing. Each library preparation also contains one no-template control and at least one fully characterized reference control. This validation study used real-world patient samples (DNA internally or externally extracted from peripheral blood, bone marrow, and buffy coat) and well-characterized reference materials. Archer® Analysis and Genosity's Genome Explorer performed the bioinformatics analyses.<sup>8</sup> Table 2 (on pages 5–6) lists targets enriched in this test. Variants are classified according to the standards and guidelines for sequence variant interpretation from the American College of Medical Genetics and Genomics and Association of Molecular Pathology.

## Results

## Accuracy: Well-characterized reference material and orthogonal method comparison

NIST "Genome in a Bottle" samples (NA12878 and NA24385) were used in this validation study. These samples represent "gold standards," enabling a direct comparison of results from the VariantPlex Myeloid NGS panel to the known high confidence NIST results within regions covered by the panel, a total of 125,945 bases. Results showed greater than 99.99% sensitivity and specificity. Additionally, 30 real world samples processed by an external CAP/CLIA certified laboratory were included in this validation study. A total of 140 variants were reported in 30 samples by the external lab using a 68 genes TruSeq Custom Amplicon panel (Illumina, Inc.). The results of these studies are summarized in Table 3. An additional 48 real-world samples were processed by an orthogonal assay, in which all 136 SNVs and indels located in overlapping regions by both panels and with allele frequencies above the assay's limit of detection were confirmed.

## Accuracy across sample types

Buffy coat, peripheral blood, bone marrow, and cell line samples were utilized in the accuracy studies. The data demonstrate that DNA quality rather than DNA source is most critical for the panel's performance.



## Accuracy across different sample barcodes

Unique barcodes were used across all intra- and inter-batch replicates. Results show the barcode set utilized in this panel does not present a bias or contamination risk.

#### Precision and reproducibility

The precision of the VariantPlex Myeloid NGS panel was investigated by analyzing intra-batch replicates (3x) of 4 samples (12 samples total), and reproducibility was investigated by analyzing inter-batch replicates (4x) of 6 samples (24 samples total). Highly concordant results were observed across all 36 tested samples for both intra- and interbatches when comparing the called variants and associated allele frequencies to expected results. Based on these results, this assay showed >99% precision and reproducibility.

## Limit of detection (LOD)

In the precision and reproducibility studies, the LOD of the panel was investigated by running a total of 5 samples (Seraseq® Myeloid, and four admixture samples) that had a range of SNVs and indels near the expected lower limit. Across the LOD analysis, 100% sensitivity was achieved down to 5% allele frequency. This corresponds to a neoplastic/ dysmorphic content of 10% or greater in the submitted specimen.

## Reportable range

Reportable range is defined as the span of all test results that are considered valid.<sup>5</sup> For molecular assays, this includes the target regions, variant types and allele frequency that will be reported. General reportable range includes non-reference SNVs and indels with allele frequency equal to or greater than 5%.

## Conclusion

Greater than 99.99% sensitivity and specificity were achieved when comparing results from two NIST "Genome in a Bottle" samples. Additionally, greater than 99% sensitivity was achieved among 78 samples with known results from an external clinical lab and confirmed by an orthogonal method. An investigation of precision and reproducibility at the LOD utilizing 4 admixture samples, 1 NIST reference sample (NA12878), and the biosynthetic sample (Seraseq Myeloid) demonstrated an overall 100% concordance for SNVs, 100% concordance for deletions, and 98.44% concordance for insertions, in inter-/intra-batches, and among the different sample barcodes.

References

<sup>1.</sup> WHO classification of tumours of haematopoietic and lymphoid tissues. World Health Organization Classification of Tumours. 2017.

<sup>2.</sup> Susswein LR, Marshall ML, Nusbaum R, et al. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med. December 2015. PMID: 26681312

<sup>3.</sup> Pritchard CC, Salipante SJ, Koehler K, et al. Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens. J Mol Diagn. 2014;16(1):56-67. PMID: 24189654

<sup>4.</sup> Gargis AS, Kalman L, Berry MW, et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol. 2012;30(11):1033-1036. PMID: 23138292

Jennings LJ, Arcila ME, Corless C, et al. Guidelines for validation of next-generation sequencing-based oncology panels: A joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diag. 2017. PMID: 28341590
EDA Standards for NGS. EDA Developing Analytical Standards for NGS trackets user laboration of the Association for Molecular standards for NGS. EDA Developing Analytical Standards for NGS trackets user laboration for Molecular standards.

<sup>6.</sup> FDA Standards for NGS. FDA: Developing Analytical Standards for NGS Testing, workshop 12-Nov-2015. www.fda.gov/downloads/MedicalDevices/NewsEvents/WorkshopsConferencs/ UCM468521.pdf. Published November 12, 2015.

<sup>7.</sup> Next generation sequencing (NGS) guidelines for somatic genetic variant detection. New York Department of Health. Jan 2018.

<sup>8.</sup> Zheng Z, Liebers M, Zhelyazkova B, et al. Anchored multiplex PCR for targeted next-generation sequencing. Nature Medicine. 2014 Dec; 20(12):1479-84. PMID: 25384085



#### Table 1. Genes and biomarker associations covered by this panel $^{\star}$

The following clinical associations have been established in the literature or are supported by professional guidelines by June 2019

| Disease | Mutated gene/Biomarker                                                                               | Prognostic, therapeutic or diagnostic association                                                                                      |
|---------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|         | FLT3 (ITD and TKD)                                                                                   | Gilteritinib, Sorafenib, Midostaurin                                                                                                   |
|         | IDH1                                                                                                 | Ivosidenib                                                                                                                             |
|         | IDH2                                                                                                 | Enasidenib                                                                                                                             |
|         | Mutated NPM1 without FLT3-ITD or with FLT3-<br>ITDlow*                                               | Favorable risk                                                                                                                         |
|         | Biallelic mutated CEBPA                                                                              | Favorable risk                                                                                                                         |
|         | Mutated NPM1 and FLT3-ITD high                                                                       | Intermediate risk                                                                                                                      |
| AML     | Wild-type NPM1 without FLT3-ITD or with FLT3-<br>ITDlow (without other adverse-risk genetic lesions) | Intermediate risk                                                                                                                      |
|         | Wild-type NPM1 and FLT3-ITD high                                                                     | Poor /Adverse risk                                                                                                                     |
|         | RUNX1                                                                                                | Poor /Adverse risk                                                                                                                     |
|         | ASXL1                                                                                                | Poor /Adverse risk                                                                                                                     |
|         | TP53                                                                                                 | Poor /Adverse risk                                                                                                                     |
|         | KIT                                                                                                  | Decreased remission duration and decreased OS in patient with t(8;21)                                                                  |
|         | EZH2, ETV6, RUNX1, and ASXL1                                                                         | Independently associated with a poor prognosis                                                                                         |
|         | DNMT3A, U2AF1, SRSF2, CBL, SETBP1, and KRAS                                                          | Decreased OS                                                                                                                           |
|         | TP53                                                                                                 | Independently associated with a poor prognosis, may predict resistence or replapse to lenalidomide                                     |
| MDS     | SF3B1                                                                                                | Strongly associated with ring sideroblasts and<br>independently associated with a more favorable prognosis                             |
|         | SRSF2, U2AF1, ZRSR2, STAG2, NRAS, GATA2, IDH2, BCOR, FLT3, WT1                                       | Associated with a poor prognosis                                                                                                       |
|         | SETBP1                                                                                               | Associated with disease progression                                                                                                    |
|         | PPM1D                                                                                                | Associated with therapy-related MDS, but not associated with adverse prognosis independent of TP53.                                    |
| MDS/MPN | EZH2                                                                                                 | Independently associated with a poor prognosis                                                                                         |
| CNANAL  | ASXL1                                                                                                | Independently associated with a poor prognosis                                                                                         |
| CMML    | SRSF2                                                                                                | Associated with a poor prognosis                                                                                                       |
|         | JAK2, MPL, CALR                                                                                      | One of the major diagnostic criteria of ET and PMF                                                                                     |
| MPN     | JAK2 V617F or exon 12 mutation                                                                       | One of the major diagnostic criteria of PV                                                                                             |
| MPN/PMF | JAK2 V617F                                                                                           | Intermediate prognosis and higher risk of thrombosis<br>compared to patients with CALR mutation                                        |
|         | MPL W515L/K                                                                                          | Intermediate prognosis and higher risk of thrombosis<br>compared to patients with CALR mutation                                        |
|         | CALR                                                                                                 | Improved survival compared to JAK2 mutation and triple<br>negative PMF. Lower risk of thrombosis compared to JAK2<br>and MPL mutation. |
|         | CALR Type 1/Type 1 like                                                                              | Improved overall survival compared to CALR Type 2/type 2<br>like and JAK2 V617F mutation                                               |
|         | "Triple negative" (non-mutated JAK2, MPL,<br>and CALR)                                               | Inferior leukemia-free survival compared to patients with JAK2 and/or CALR-mutated PMF; Inferior OS compared to                        |
|         |                                                                                                      | patients with CALR mutated PMF                                                                                                         |
|         | ASXL1                                                                                                | patients with CALR mutated PMF<br>Independently associated with inferior OS                                                            |

For Research Use Only. Not for use in diagnostic procedures.



#### Table 1. Continued \*

|                                                                                     | SRSF2                                            | Independently associated with inferior OS and leukemia-<br>free survival                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                     | TP53                                             | Associated with leukemic transformation                                                                                                                                                                                                                  |
| MPN/PMF                                                                             | U2AF1 Q157                                       | Inferior OS compared to patients with S34 mutated or U2AF1 unmutated PMF. The effect is most evident in younger patients.                                                                                                                                |
|                                                                                     | Combined CALR and ASXL1 status                   | Intermediate survival for CALR+ ASXL1+ patients, shortest<br>survival for CALR-ASXL1+ patients, longest for CALR+ASXL1<br>patients                                                                                                                       |
|                                                                                     | ASXL1, SRSF2, IDH1 and IDH2                      | Independently associated with inferior OS. Also affect myelofibrosis-free survival                                                                                                                                                                       |
| MPN/PV                                                                              | JAK2 Exon 12 mutation                            | Exhibit younger age, increased mean hemoglobin/<br>hematocrit, and lower mean white blood cell and platelet<br>counts at diagnosis compared to those with JAK2 V617F<br>mutated PV.                                                                      |
|                                                                                     | CALR                                             | Lower risk of thrombosis compared to JAK2 mutated ET                                                                                                                                                                                                     |
| MPN/ET                                                                              | ТР53                                             | Associated with inferior leukemia-free survival in multivariate analysis                                                                                                                                                                                 |
|                                                                                     | SH2B3, IDH2, U2AF1, SF3B1, EZH2, TP53            | Independently associated with inferior OS. Also affect myelofibrosis-free survival                                                                                                                                                                       |
| MPN/CNL                                                                             | CSF3R                                            | Diagnostic marker                                                                                                                                                                                                                                        |
|                                                                                     | BCR-ABL mutations Y253H, E255K/V, or F359V/C/I   | Dasatinib                                                                                                                                                                                                                                                |
| Ch Al                                                                               | F317L/V/I/C, T315A, or V299L                     | Nilotinib                                                                                                                                                                                                                                                |
| CML                                                                                 | E255K/V, F317L/V/I/C, F359V/C/I, T315A, or Y253H | Bosutinib                                                                                                                                                                                                                                                |
|                                                                                     | T315I                                            | Ponatinib, Omacetaxine, allogenic HCT, or clinical trial                                                                                                                                                                                                 |
| 3-ALL                                                                               | FLT3, SH2B3, JAK1, JAK3, JAK2                    | Ph-like ALL, associated with unfavorable prognosis                                                                                                                                                                                                       |
|                                                                                     | ABL1 mutations Y253H, E255K/V, or F359V/C/I      | Dasatinib                                                                                                                                                                                                                                                |
| Relapsed or                                                                         | F317L/V/I/C, T315A, or V299L                     | Nilotinib                                                                                                                                                                                                                                                |
| Refractory BCR-<br>ABL1 positive B-ALL                                              | E255K/V, F317L/V/I/C, F359V/C/I, T315A, or Y253H | Bosutinib                                                                                                                                                                                                                                                |
|                                                                                     | T315I                                            | Ponatinib                                                                                                                                                                                                                                                |
|                                                                                     | BTK C481S                                        | Acalabrutinib should not be used for ibrutinib-refractory<br>CLL with this mutation.                                                                                                                                                                     |
| CLL/SLL                                                                             | TP53                                             | Associated with low response rates with<br>chemoimmunotherapy; Associated with unfavorable<br>prognosis when IGHV is <=2% mutated; predictors of poor<br>survival and resistance to fludarabine-based regimens,<br>independent of 17p chromosome status. |
|                                                                                     | Notch1                                           | Independently associated with Richter's transformation.                                                                                                                                                                                                  |
| HCL                                                                                 | BRAF V600                                        | Distinguish classic HCL from HCL-variant and marginal zone<br>lymphoma; Vemurafenib                                                                                                                                                                      |
| Waldenstrom<br>Macroglobulinemia/<br>Lymphoplasmacytic<br>lymphoma                  | MYD88 L265                                       | Help differentiate from IgM-secreting B-cell lymphoma,<br>marginal zone lymphoma and IgM plasma cell myeloma;<br>lower overall and absence of major responses observed in<br>MYD88 wild-type patients under treatment with Ibrutinib;                    |
| Mantle cell<br>lymphoma                                                             | ТР53                                             | Associated with poor prognosis in patients treated with conventional therapy, including transplant                                                                                                                                                       |
| T-cell lymphoma                                                                     | STAT3                                            | Diagnosis of Large Granular Lymphocytic Leukemia (LGLL)<br>and natural killer leukemias                                                                                                                                                                  |
| ML: Acute myeloid leuken<br>-ALL: B cell acute lymphob<br>1DS: Myelodysplastic synd | plastic leukemia PMF: Primary Myelofibrosis      | CMML: Chronic myelomonocytic leukemia<br>CLL: Chronic lymphocytic leukemia<br>SLL: Small cell lymphocytic lymphoma                                                                                                                                       |

MDS: Myelodysplastic syndrome CML: Chronic myelogenous leukemia MPN: Myeloproliferative neoplasm

EILESSENTIAL Thrombocythemia CHIP: Clonal hematopoiesis of indeterminate potential

SLL: Small cell lymphocytic lymphoma HCL: Hairy cell leukemia



#### Table 2. Targets Included In VariantPlex Myeloid Tumor Panel

| Gene    | Transcript ID  | Target exons                                                        |
|---------|----------------|---------------------------------------------------------------------|
| ABL1    | NM_005157      | 4,5,6,7,8,9,10                                                      |
| ANKRD26 | NM_014915      | 1(c113-c134)                                                        |
| ASXL1   | NM_015338.5    | 1,2,3,4,5,6,7,8,9,10,11,12,13                                       |
| ASXL1   | NM_001164603.1 | 5                                                                   |
| ATRX    | NM_000489      | 8,9,10,11,17,18,19,20,21,22,23,<br>24,25,26,27,28,29,30,31,32       |
| BCOR    | NM_017745      | 2,3,4,5,6,7,9,10,11,12,13,14,15                                     |
| BCOR    | NM_001123385   | 8                                                                   |
| BCORL1  | NM_021946      | 1,2,3,4,5,6,7,8,9,10,11,12                                          |
| BRAF    | NM_004333      | 3,10,11,12,13,15                                                    |
| BTK     | NM_000061      | 15                                                                  |
| CALR    | NM_004343      | 8,9                                                                 |
| CBL     | NM_005188      | 2,3,4,5,7,8,9,16                                                    |
| CBLB    | NM_170662      | 3,9,10                                                              |
| CBLC    | NM_012116      | 9,10                                                                |
| CCND2   | NM_001759      | 5                                                                   |
| CDKN2A  | NM_058197      | 1                                                                   |
| CDKN2A  | NM_058195      | 1                                                                   |
| CDKN2A  | NM_000077      | 2,3                                                                 |
| CDKN2A  | NM_001195132   | 3                                                                   |
| CEBPA   | NM_004364      | 1                                                                   |
| CSF3R   | NM_156039      | 17                                                                  |
| CSF3R   | NM_172313      | 10,18                                                               |
| CSF3R   | NM_000760      | 14,15,16                                                            |
| CUX1    | NM_001202543   | 15,16,17,18,19,20,21,22,23,24                                       |
| CUX1    | NM_001913      | 1,2,3,4,5,6,7,8,9,10,11,12,1<br>3,14,15,16,17,18,19,20,21,<br>22,23 |
| CUX1    | NM_181552      | 1                                                                   |
| CXCR4   | NM_003467      | 1,2                                                                 |
| DCK     | NM_000788      | 2,3                                                                 |

| Gene 1   | Franscript ID | Target exons                                                                          |
|----------|---------------|---------------------------------------------------------------------------------------|
| DDX41 N  | NM_016222     | 1,2,3,4,5,6,7,8,9,10,11,12,13,<br>14,15,16,17                                         |
| DHX15 N  | NM_001358     | 3                                                                                     |
| DNMT3A N | NM_022552     | 2,3,5,6,7,8,9,10,11,12,13,14,<br>15,16,17,18,19,20,21,22,23                           |
| DNMT3A   | NM_153759     | 1,2                                                                                   |
| DNMT3A   | NM_175630     | 4                                                                                     |
| ETNK1 N  | NM_018638     | 3                                                                                     |
| ETV6     | NM_001987     | 1,2,3,4,5,6,7,8                                                                       |
| EZH2 N   | NM_004456     | 2,3,4,5,6,7,8,9,10,11,12,13,1<br>4,15,16,17,18,19,20                                  |
| FBXW7    | NM_018315     | 1,2,3,4,5,6,7,8,9,10,11                                                               |
| FLT3 N   | NM_004119     | 8,9,10,11,12,13,14,15,16,17,<br>19,20,21                                              |
| GATA1 N  | NM_002049     | 2                                                                                     |
| GATA2    | NM_032638     | 2,3,4,5,6                                                                             |
| GNAS N   | NM_000516     | 8,9,10,11                                                                             |
| HRAS N   | NM_005343     | 2,3,4                                                                                 |
| IDH1 N   | VM_005896     | 3,4                                                                                   |
| IDH2     | NM_002168     | 4,6                                                                                   |
| IKZF1    | NM_001220769  | 5                                                                                     |
| IKZF1    | NM_001220767  | 2,3,4,5,7                                                                             |
| IKZF1    | NM_001220771  | 4                                                                                     |
| IKZF1    | NM_001291845  | 4                                                                                     |
| IKZF1 N  | NM_001291847  | 5                                                                                     |
| JAK2 N   | NM_004972     | 12,13,14,15,16,19,20,21,22,<br>23,24,25                                               |
| JAK3     | NM_000215     | 3,11,13,15,18,19                                                                      |
| KDM6A N  | NM_021140     | 1,2,3,4,5,6,7,8,9,10,11,12,13,<br>14,15,16,17,18,19,20,21,22,2<br>3,24,25,26,27,28,29 |
| KDM6A    | NM_001291415  | 14                                                                                    |



#### Table 2. Continued

| Gene   | Transcript ID | Target exons                                                                                                                                                                       |
|--------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| КІТ    | NM_000222     | 1,2,5,8,9,10,11,12,13,14,15,<br>17,18                                                                                                                                              |
| KMT2A  | NM_005933     | 1,2,3,4,5,6,7,8,9,10,11,12,13,<br>15,16,17,18,19,20,21,22,23,2<br>4,25,26,27,28,29,30,31,32,3<br>3,34,35,36                                                                        |
| KMT2A  | NM_001197104  | 14                                                                                                                                                                                 |
| KRAS   | NM_004985     | 2,3,4                                                                                                                                                                              |
| LUC7L2 | NM_016019     | 1,2,3,4,5,6,7,8,9,10                                                                                                                                                               |
| LUC7L2 | NM_001244585  | 2                                                                                                                                                                                  |
| MAP2K1 | NM_002755     | 2,3                                                                                                                                                                                |
| MPL    | NM_005373     | 10,12                                                                                                                                                                              |
| MYC    | NM_002467     | 1,2,3                                                                                                                                                                              |
| MYD88  | NM_002468     | 4,5                                                                                                                                                                                |
| MYD88  | NM_001172567  | 3                                                                                                                                                                                  |
| NF1    | NM_000267     | 1,2,3,4,5,6,7,8,9,10,11,12,13,<br>14,16,17,18,19,20,21,22,23,2<br>4,25,26,27,28,29,30,31,32,3<br>3,34,35,36,37,38,39,40,41,4<br>2,43,44,45,46,47,48,49,50,5<br>1,52,53,54,55,56,57 |
| NF1    | NM_001128147  | 15                                                                                                                                                                                 |
| NF1    | NM_001042492  | 31                                                                                                                                                                                 |
| NOTCH1 | NM_017617     | 26,27,28,34,c.*370 to c.*380                                                                                                                                                       |
| NPM1   | NM_002520     | 11                                                                                                                                                                                 |
| NRAS   | NM_002524     | 2,3,4,5                                                                                                                                                                            |
| PDGFRA | NM_006206     | 12,14,15,18                                                                                                                                                                        |
| PHF6   | NM_032335     | 2,3,4,5,6,7,8                                                                                                                                                                      |
| PHF6   | NM_001015877  | 10                                                                                                                                                                                 |
| PHF6   | NM_032458     | 9                                                                                                                                                                                  |
| PPM1D  | NM_003620     | 6                                                                                                                                                                                  |
| PTEN   | NM_000314     | 1,2,3,4,5,6,7,8,9                                                                                                                                                                  |
| PTPN11 | NM_002834     | 3,4,7,8,12,13                                                                                                                                                                      |
| PTPN11 | NM_080601     | 11                                                                                                                                                                                 |
| RAD21  | NM_006265     | 2,3,4,5,6,7,8,9,10,11,12,13,14                                                                                                                                                     |

\* Table 1 references

1. NCCN Guidelines v3. May 2019, Acute Myeloid Leukemia

2. NCCN Guidelines v2. May 2019, Acute Lymphoblastic Leukemia

3. NCCN Guidelines v5. May 2019, Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

4. NCCN Guidelines v1. May 2019, Chronic Myeloid Leukemia

5. NCCN Guidelines v3. May 2019, Hairy Cell Leukemia

6. NCCN Guidelines v1. May 2019, Hodgkin Lymphoma

7. NCCN Guidelines v2. May 2019, Multiple Myeloid

| Gene    | Transcript ID | Target exons                                                                                        |
|---------|---------------|-----------------------------------------------------------------------------------------------------|
| RBBP6   | NM_006910     | p.1444,p.1451,p.1569,p.165<br>4,p.1673                                                              |
| RUNX1   | NM_001754     | 2,3,5,6,7,8,9                                                                                       |
| RUNX1   | NM_001122607  | 1,5                                                                                                 |
| SETBP1  | NM_015559     | 4 (p.799-p.950)                                                                                     |
| SF3B1   | NM_012433     | 13,14,15,16,17,18,19,20,21                                                                          |
| SH2B3   | NM_005475     | 2,3,4,5,6,7,8                                                                                       |
| SLC29A1 | NM_001078175  | 4,13                                                                                                |
| SMC1A   | NM_006306     | 1,2,3,4,5,6,7,8,9,10,11,12,13,<br>14,15,16,17,18,19,20,21,22,<br>23,24,25                           |
| SMC1A   | NM_001281463  | 2                                                                                                   |
| SMC3    | NM_005445     | 10,13,19,23,25,28                                                                                   |
| SRSF2   | NM_003016     | 1,2                                                                                                 |
| STAG2   | NM_006603     | 2,3,4,5,6,7,8,9,10,11,12,13,1<br>4,15,16,17,18,19,20,21,22,23<br>,24,25,26,27,28,29,30,31,<br>32,33 |
| STAG2   | NM_001042749  | 32                                                                                                  |
| STAT3   | NM_003150     | 20                                                                                                  |
| STAT3   | NM_139276     | 21                                                                                                  |
| TET2    | NM_001127208  | 4,5,6,7,8,9,10,11                                                                                   |
| TET2    | NM_017628     | 3                                                                                                   |
| TP53    | NM_000546     | 1,2,3,4,5,6,7,8,9,10,11                                                                             |
| TP53    | NM_001276695  | 10                                                                                                  |
| TP53    | NM_001276696  | 10                                                                                                  |
| U2AF1   | NM_006758     | 2,6,7                                                                                               |
| U2AF1   | NM_001025204  | 6                                                                                                   |
| U2AF2   | NM_007279     | 1,2,3,4,5,6,7,8,9,10,11,12                                                                          |
| WT1     | NM_000378     | 1,2,3,4,5,6,7,9                                                                                     |
| WT1     | NM_001198552  | 8                                                                                                   |
| XPO1    | NM_003400     | 15,16,18                                                                                            |
| ZRSR2   | NM_005089     | 1,2,3,4,5,6,7,8,9,10,11                                                                             |

8. NCCN Guidelines v2. May 2019, Myelodysplastic Syndromes

9. NCCN Guidelines v2. May 2019, Waldenstrom Macroglobulinemia/Lymphoplasmacytic

Lymphoma 10.NCCN Guidelines v3. May 2019, B-Cell Lymphomas

11. NCCN Guidelines v2. May 2019, Myeloproliferative Neoplasms

12.NCCN Guidelines v2. May 2019, T-Cell Lymphomas

 WHO classification of tumours of haematopoietic and lymphoid tissues. World Health Organization Classification of Tumours. 2017.

For Research Use Only. Not for use in diagnostic procedures.