

Molecular Diagnostics for Breast Cancer

Deborah Dillon, M.D. Brigham and Women's Hospital Harvard Medical School Boston, MA

Disclosures Advisory Board for Oncology Analytics, Inc. Consult for Novartis Research support from Canon, Inc Will discuss the SOLAR-1 trial sponsored by Novartis

Molecular classification of breast cancer

- Intrinsic subtypes
- Multigene predictors
- Markers of rare TN subtypes
- Biomarkers as tx targets/predictors
 - ER/PR/HER2
 - PIK3CA
 - BRCA 1/2
 - PDL1/TMB/MMR-D
 - NTRK

Oncotype DX[™]

Real-time PCR of 21 genes done in FFPE tissue to predict recurrence and chemotx benefit in ER+ breast cancer.

Algorithm is largely driven by genes related to ER, HER2 and proliferation

Included in all major clinical guidelines

Assay is performed at Genomic Health

Multigene Recurrence Predictors Where are we now in 2021?

- Prosigna and Mammaprint are both FDA-cleared.
- Oncotype Dx and Mammaprint have been prospectively validated in RCTs to predict chemotherapy benefit.
- Classification of individual patients may vary somewhat in different tests.
- Most oncology guidelines now support the use of a multigene assay to determine chemotx use in ER+ HER2- cancer

-->evidence stronger LN neg>LN pos

• Multigene predictors are covered by most major US insurance carriers for pts with early-stage disease.

Diagnostic Biomarkers in Breast Cancer

- Most TNBC is high-grade and is treated with chemotx
- Several low-grade histologic subtypes of TNBC have characteristic molecular alterations

- Tall cell carcinoma with reverse polarity (TCCRP)
- IDH2 R172 hotspot mutations

Pareja F (Brogi E). Mod Pathol. 2020 Jun; 33(6): 1056–1064.

ER/PR/HER2

Traditional Breast Biomarkers

ER/PR/HER2 (IHC+/-FISH)

Testing done on all newly diagnosed invasive breast cancers, all post-tmt breast cancers, all recurrences, all metastases

ER/PR expression predict response to ER pathway targeting

80% response in ER+/PR+ 40% response in ER+/PR-

HER2 overexpression and amplification predict response to HER2 targeting

65% pCR ER-/HER2+ monotx 40% pCR ER+/HER2+ monotx 80% with addition of chemotx

HER2 IHC: Causes of false positive 3+

Overstaining

normal breast tissue should be negative (except apocrine metaplasia which can be 1+ to 2+)

Edge artifact

lobular carcinomas can appear falsely positive in edges or between cells

Cytoplasmic positivity

only membrane positivity should be scored

Overinterpretation

moderate complete or granular membrane expression

13 of 19 IHC/FISH discordant cases were due to overinterpretation due to granular staining, crush artifact, and weak intensity.

Grimm EE et al. Am J Clin Pathol 134:284, 2010.

HER2 IHC: Avoiding false positive 3+

Have a very high threshold for interpreting a cancer as 3+.

Should have strong crisp complete membrane positivity throughout (>10% contiguous focus).

Have a low threshold for confirming by ISH in uncertain cases.

How should we define and report HER2 heterogeneity?

Want to identify cases with distinct clustered subpopulations with different HER2 gene status.

Carcinomas are classified as HER2 positive if >10% of the cancer is positive (IHC/ISH).

The cells must be "observed in a **homogeneous and contiguous** population" (i.e. not scattered)

Cancers with discrete identifiable subpopulations of HER2 positive cells are rare, <5% of total

Discrete second population may be a source of "resistant" disease

Oncologists may wish to tailor therapy to include both the positive and negative areas, especially if triple negative.

 \rightarrow Rare: we report HER2 status for both populations with % tumor.

Nitta et al. Agene-protein_assay_for_HER2_Diag Pathol 7:60, 2012

New FDA approved targeted therapies have led to newer predictive biomarkers PIK3CA mutations ٠ gBRCA1/2 mutations PD-L1 expression MMR-D (MSI-H) **VENTANA PD-L1** (SP142) Assay TMB-H • NTRK fusions www.aiaaen.com How they are measured CDx Technical and reporting challenges for pathologists www.foundationone.com

SOLAR-1 Trial

phase III trial in HR+/HER2advanced BC with *PIK3CA* mutations

PFS nearly doubled with the addition of the PI3K inhibitor alpelisib in cohort with *PIK3CA* mutations compared to endocrine therapy alone

Interesting Question What about patients with somatic mutations?

- Does a somatic mutation in *BRCA1/2* also predict response to PARP inhibition?
 - Prior studies in Ovarian Cancer showed response to PARPi in both germline and somatic *BRCA*-mutated cancers
- somatic *BRCA*1/2 mutations are present in ~3% of breast cancers
- Recent phase II study has shown that PARP inhibition is an effective treatment for patients with metastatic BC and somatic BRCA1/2 mutations

Tung et al. TBCRC 048. J Clin Oncol 38: 4274-82, 2020.

Tissue-agnostic Markers

What we know about these markers in breast cancer

Major challenge

Each checkpoint inhibitor has its own IHC test for PD-L1 expression

	Ab	Melanoma	NSCLC	Urothelial	HNSCC	Gastric
Anti-PD-1						
Nivolumab (BMS)	28-8 Dako	1% (TC)	1%, 5%, 10% (TC)	1% (TC)	1% (TC)	
Pembrolizumab ^d (Merck)	22C3 Dako		1% ^b , 50% ^c (TC)			1% (TC/IC)
Anti-PD-L1						
Durvalumab (AstraZeneca)	SP263 Ventana			25% (TC/IC)		
Atezolizumab (Roche/Genentech)	SP142 Ventana		50% (TC)/10% (IC)	5% (IC)		

-different abs for each agent-different cutoff points for each tumor type-in different cell populations

Need more harmonization work in this area

MMR-deficient (MSI-H) solid tumors

- In May 2017, the FDA approved pembrolizumab for advanced MMR-D (MSI-H) solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment
- The approval was based on data from five single-arm KEYNOTE trials
- Included **two patients** with **MMR-D breast cancer**, both had partial response
- No official companion diagnostic/local testing can be used

High Tumor Mutational Burden (TMB)

TMB = number of somatic mutations per megabase

~5% of breast cancers

Associated with high TILs and mutations in DNA damage repair genes

Associated with longer PFS when treated with checkpoint inhibitors

Barroso-Sousa R. Clin Cancer Res 2020;26:2565–72

Summary and Recommendations

Breast cancers can be classified into gene-expression based subtypes

ER positive, HER2 negative cancers ("luminal") often require multigene classifier testing to determine risk of recurrence/sensitivity to chemotx -results can vary for individual pts between testing platforms

Determination of HER2 status often requires FISH testing

-be sure you are working from the latest guidelines (2018) for classification of cases in groups 2, 3 and 4

-be appropriately cautious about HER2 IHC results that don't fit with your FISH results –>communicate with your breast pathologists

Summary and Recommendations

There are two recent FDA approvals impacting breast cancer:

→olaparib for gBRCA1/2 mutated advanced cancers

→alpelisib for advanced ER+/HER2- cancers with *PIK3CA* mutations

Be aware of the need to update BRCA1/2 VUSs regularly Be cautious about reporting PIK3CA mutations that were not included in the SOLAR1 trial, especially with regard to evidence for activation

Recent tissue-agnostic approvals also impact breast cancer: \rightarrow MMR-D and TMB-H status will impact 2-5% of breast cancers \rightarrow NTRK-fusions will be seen in <1%