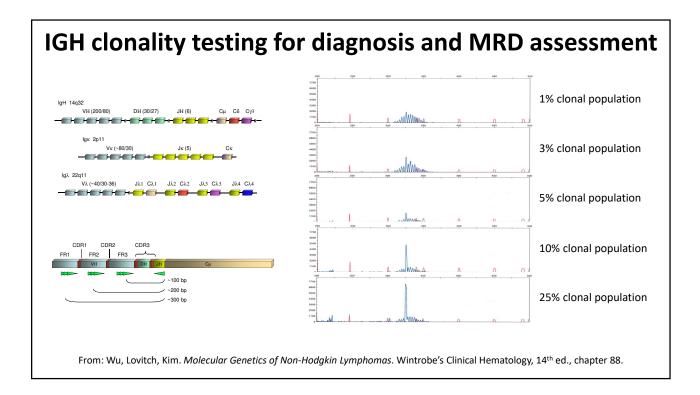


Outline

Since I couldn't possibly cover everything about molecular diagnostics of B cell lymphomas in 25 minutes, I will focus on practical applications that are (or will soon be) part of the standard of care for diagnosis and management of BCL:


- Molecular methods applied to diagnosis and classification of BCL (brief overview)
- Molecular diagnostics in management of *low-grade* B cell lymphomas
 CLL/SLL: prognosis, assessment of resistance to targeted therapy
 - > LPL: MYD88 and CXCR4 mutation
 - ► HCL and HCLv: BRAF and MAP2K1 mutation
- Molecular diagnostics in management of *high-grade* B cell lymphomas
 - ➢ Cell-of-origin classification of DLBCL
 - Double- and triple-hit lymphomas
 - Identification of unique subtypes of high-grade lymphoma

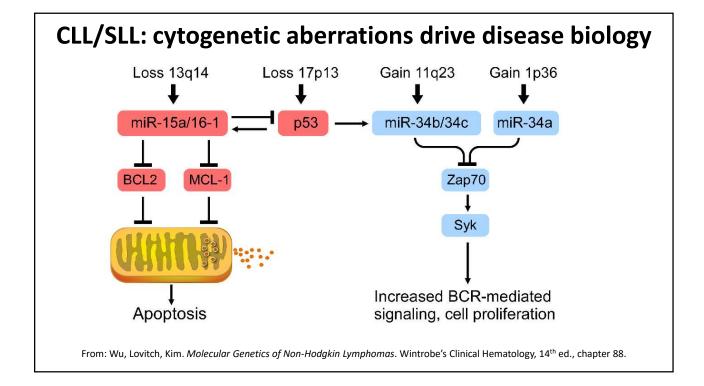
Outline

Since I couldn't possibly cover everything about molecular diagnostics of B cell lymphomas in 25 minutes, I will focus on practical applications that are (or will soon be) part of the standard of care for diagnosis and management of BCL:

• Molecular methods applied to diagnosis and classification of BCL (brief overview)

- Molecular diagnostics in management of *low-grade* B cell lymphomas
 - CLL/SLL: prognosis, assessment of resistance to targeted therapy
 - ▶ LPL: MYD88 and CXCR4 mutation
 - → HCL and HCLv: BRAF and MAP2K1 mutation
- Molecular diagnostics in management of *high-grade* B cell lymphomas
 - ➢ Cell-of-origin classification of DLBCL
 - Double- and triple-hit lymphomas
 - Identification of unique subtypes of high-grade lymphoma

	Cytogene	etic abnormali	ties in B-cell NHL
Translocation	Product	Disease Association	Rearrangements/ fusions:
t(1;14)(p22;q32)	BCL10 overexpression (IGH)	MALT ^a	Reallangements/ jusions.
t(1;14)(q21;q32)	BCL9 overexpression (IGH)	B-LBL and others	• MVC rearrangements DL DUU
t(1;14)(q21;q32)	FCRL4/5 overexpression (IGH)	Myeloma (<5%)	 MYC rearrangement: BL, DHL
t(1;14)(q22;q32)	MUC1 overexpression (IGH)	DLBCL	
t(1;22)(q23;q11)	FCGR2B overexpression (IGL)	Transformed FL	 BCL6 rearrangement: DLBCL, DHL
t(2;7)(p12;q21-q22)	CDK6	SMZL	Delo realitangement. Debet, Drie
t(2;14)(p16.1;q32)	BCL11A overexpression (IGH)	CLL, DLBCL	
t(2;17)(p23;q23)	CLTC-ALK	ALK-positive LBCL	 CCND1 fusion: MCL
t(3;14)(q27;q32)/t(3;v)(q27;v)	BCL6 overexpression (IGH or IGK/IGL)	DLBCL (5%-10%) and others	
t(3;14)(p14;q32)	FOXP1 overexpression (IGH)	MALT	 BIRC3-MALT1 fusion: MALT
t(4;14)(p16;q32)	WHSC1 (MMSET)/FGFR3 overexpression (IGH)	Mycloma (20%-25%)	* DIRCS-IVIALI I TUSIOII. IVIALI
t(5;14)(q23-q31;q32)	IL3 overexpression (IGH)	B-LBL	
t(6;14)(p25-p23;q32)	IRF4 overexpression (IGH)	Myeloma (~20%)	 IGH-BCL2 fusion: FL, DHL
t(6;14)(p21;q32)	CCND3 overexpression (IGH)	Myeloma (<5%), DLBCL, SMZL, MZL	
t(6;14)(p22;q32)	ID4 overexpression (IGH)	B-LBL (<1%)	
t(8;14)(q24;q32)/t(8;v)(q24;v)	MYC overexpression (IGH or IGK/IGL)	BL (>98%), DLBCL, ^a FL, ^a PLL, myeloma	
t(8;14)(q11;q32)	CEBPD overexpression (IGH)	B-LBL (<1%)	Gains/losses:
t(9;14)(p13;q32)	PAX5 overexpression (IGH)	LPL (1%-2%), other neoplasms with plasmacytic differentiation, DLBCL	
t(10;14)(q24;q32)	NFKB2 overexpression (IGH)	DLBCL	 7q deletion (SMZL)
t(11;14)(q13;q32)	CCND1 overexpression (IGH)	MCL (>95%), PLL, SMZL, myelomab (20%-25%)	· · · · · · · · · · · · · · · · · · ·
t(11;14)(q23;q32)	PAFAH1B2 overexpression (IGH)	PMBCL	• Tricomy 12, 11a deletion, 12a deleti
t(11;14)(q23;q32)	DDX6 overexpression (IGH)	DLBCL	 Trisomy 12, 11q deletion, 13q deletion
t(11;18)(q22;q21)	BIRC3-MALT1 fusion	MALT ⁿ	(011)
t(12;14)(q23;q32)	CHST11 overexpression (IGH)	DLBCL, CLL (rare)	(CLL)
t(12;14)(q24;q32)	BCL7A	BL, myeloma	
t(12;15)(q32;q11-13)	NBEAP1?	DLBCL	 17p deletion (many – poor prognosi
t(12;22)(p13;q11)	CCND2	CLL	Typ activity (many – poor prognos
t(14;16)(q32;q22-q23)	MAF overexpression (IGH)	Myeloma (20%-25%)	
t(14;18)(q32;q21)	BCL2 overexpression (IGH)	FL (~80%), DLBCL (~20%)	
t(14;18)(q32;q21)	MALT1 overexpression (IGH)	MALT	From: Wu, Lovitch, Kim. Molecular Genetics of Non-
t(14;19)(q32;q13)	BCL3 overexpression (IGH)	CLL	Hodgkin Lymphomas. Wintrobe's Clinical Hematology, 14
t(14;19)(q32;q13)	CEBPA overexpression (IGH)	B-LBL (<1%)	5 , i
t(14;20)(q32;q11-q13)	MAFB overexpression (IGH)	Myeloma	ed., chapter 88.


Outline

Since I couldn't possibly cover everything about molecular diagnostics of B cell lymphomas in 25 minutes, I will focus on practical applications that are (or will soon be) part of the standard of care for diagnosis and management of BCL:

• Molecular methods applied to diagnosis and classification of BCL (brief overview)

Molecular diagnostics in management of *low-grade* B cell lymphomas
 CLL/SLL: prognosis, assessment of resistance to targeted therapy
 LPL: MYD88 and CXCR4 mutation
 HCL and HCLv: BRAF and MAP2K1 mutation

- Molecular diagnostics in management of high-grade B cell lymphomas
 - ≻ Cell-of-origin classification of DLBCL
 - > Double- and triple-hit lymphomas
 - ▶ Identification of unique subtypes of high-grade lymphoma

CLL/SLL: cytogenetic findings and their significance

• 13q deletion (most common recurrent abnormality; 50-60% of cases)

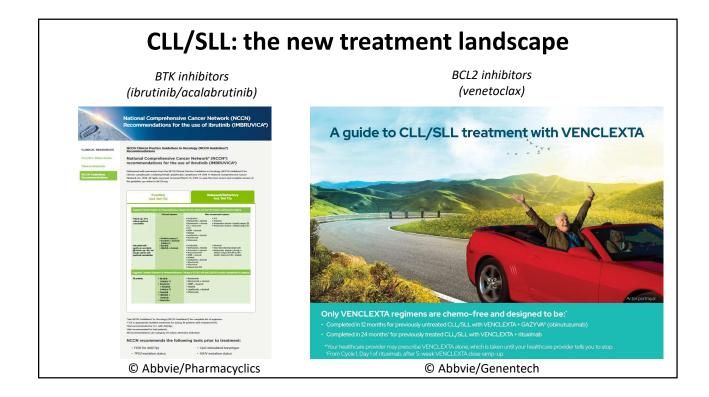
- Can be homozygous or heterozygous; both have <u>favorable prognosis</u>
- Results in loss of two microRNAs (miR-15a and miR-16-1) that repress anti-apoptotic genes including BCL-2, resulting in overexpression

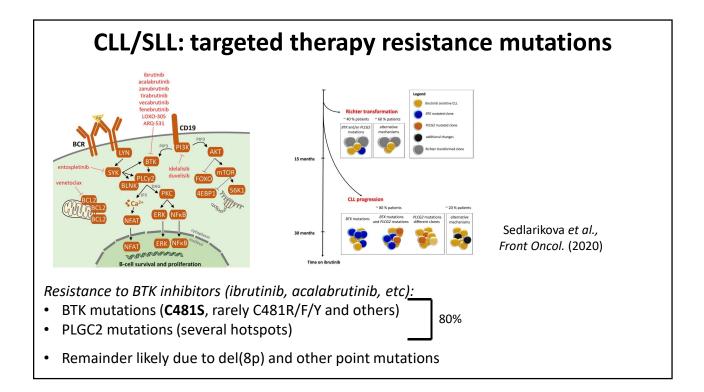
• 11q22-23 deletion (17% of cases)

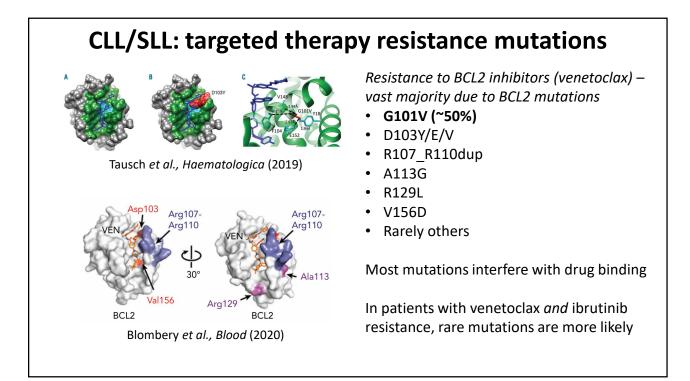
- Results in loss of ATM phosphorylates and activates p53
- > Also results in loss of two miRNAs, miR-34b and miR-34c, that suppress ZAP70
- > Associated with poor prognosis; add alkylating agent to chemotherapy
- Trisomy 12 (20% of cases)
 - Associated with atypical morphologic and immunophenotypic features (irregular nuclear contours, open chromatin, increased CD11c)
 - > Intermediate risk factor; prognostic impact modified by other abnormalities present
- 17p13 deletion (8% of cases)
 - > Results in loss of **TP53** (always associated with a poor prognosis)

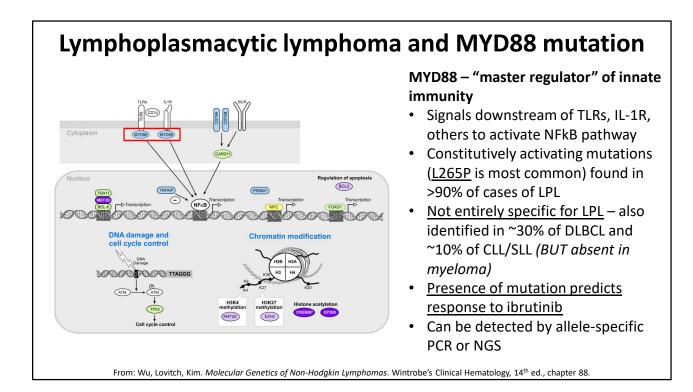
CLL/SLL and somatic hypermutation (SHM)

CLL/SLL is really two different diseases!


- SHM-positive/IGHV-mutated (50-60%)
 - Derived from memory B cells that have been through the germinal center reaction
 - Median overall survival 293 months from diagnosis (>22 years!)


• SHM-negative/IGHV-unmutated (50-60%)


- Derived from innate memory B cells that have <u>not</u> been through the germinal center reaction
- Based on epigenetic studies, more biologically similar to naïve B cells
- Median overall survival 95 months (~9 years) for low-stage disease so more aggressive disease than IGHV-mutated CLL/SLL
- ZAP70 expression can be used as a surrogate if IGHV testing is not feasible


CLL/SLL: somatic mutations

- TP53 mutation (15% of cases; higher percentage post-chemo)
 - Often associated with 17p deletion (biallelic inactivation)
- **NOTCH1 mutation** (4-12% of cases; often associated with trisomy 12, increase in Richter transformation)
 - Most common mutation is 2bp deletion (delCT) in PEST domain (gain of function)
 - Decreased overall survival
- SF3B1 mutation (~5% of cases at diagnosis; higher post-treatment and post-relapse)
 - K700E is most common mutation (same in MDS); others at codon 662, 666
 - Result in aberrant splicing
 - Predominantly found in IGHV-unmutated CLL
- MYD88 mutation (~10% of cases; vs. >90% in LPL)
 - Predominantly found in IGHV-mutated CLL
 - Patients tend to be younger and have more advanced disease

Lymphoplasmacytic lymphoma and CXCR4 mutation

- CXCR4 chemokine receptor that promotes adhesion to bone marrow stroma
- Mutations found in 27-36% of cases of LPL in nearly all mutated cases (>98%) MYD88 L265P mutation is also present, so most likely acquired late in disease as a subclonal event
- Nonsense and frameshift mutations that result in loss of C-terminal regulatory domain, resulting in constitutive signaling
- <u>Associated with more aggressive phenotype</u>
 - Higher serum IgM
 - Higher bone marrow disease burden
 - Higher likelihood of requiring therapy
- <u>Associated with resistance to ibrutinib</u> MYD88^{mut}CXCR4^{mut} cases are less sensitive than MYD88^{mut}CXCR4^{wt}, but still more sensitive than MYD88^{wt}
- Nonsense mutations may be associated with a worse prognosis than frameshift mutations
- Clinical significance in isolation (i.e. without MYD88 mutation) is uncertain
- NGS is preferred method of detection due to heterogeneity of mutation

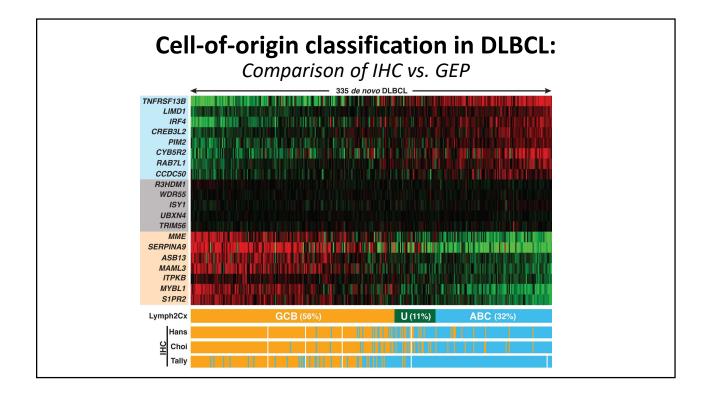
Hairy cell leukemia and BRAF mutation

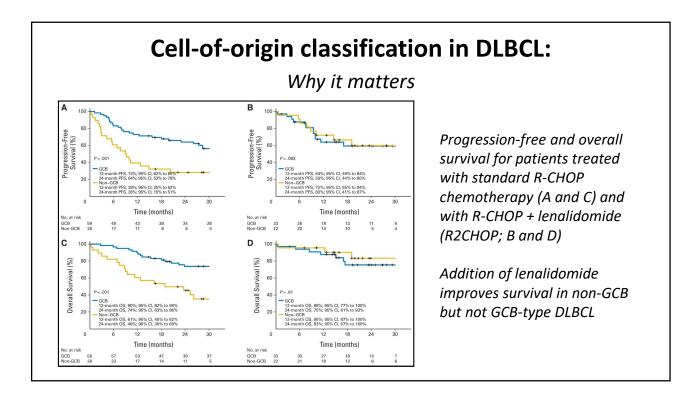
• BRAF V600E mutation – found in ~98% of cases of classical HCL

- Same mutation found in solid tumors (e.g. melanoma, papillary thyroid carcinoma)
- However, not found in morphologic mimics of HCL (splenic marginal zone lymphoma, hairy cell leukemia-variant, splenic diffuse red pulp small B-cell lymphoma)
- Confers resistance to BRAF inhibitors (e.g. vemurafenib; response rate 96-100%)
- Can be detected by mutation-specific PCR-based assays or by NGS; latter may be preferred as it will also detect functionally equivalent mutations (e.g., C597S, V600K)

Hairy cell leukemia variant and MAP2K1 mutation

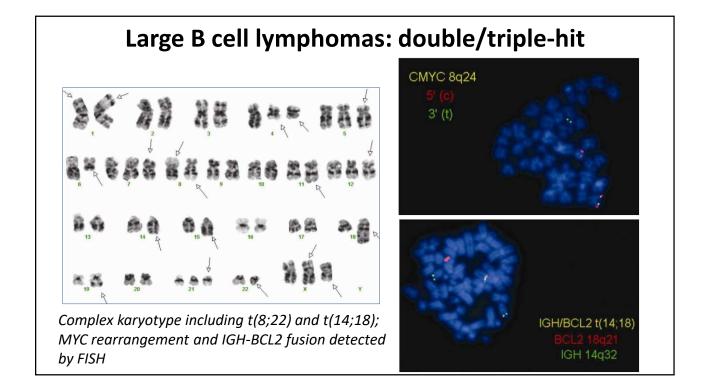
- <u>Hairy cell leukemia variant</u> defined as B cell neoplasm with morphologic features of HCL, but variant clinical presentation and/or immunophenotype
 - > Typically present with leukocytosis rather than cytopenias
 - Lack expression of one or more canonical HCL markers (CD11c, CD25, CD103)
 - > Poor response to purine analogues (cladribine, pentostatin)
- Universally (so far) negative for BRAF V600E mutation
- Activating mutations in MAP2K1 found in 42% of cases
 - Kinase downstream of BRAF so alternate route to activation of same pathway
 - MAP2K1 mutations also identified in (rare) cases of BRAF^{wt} classical HCL may be more predictive of clinical behavior than conventional classification

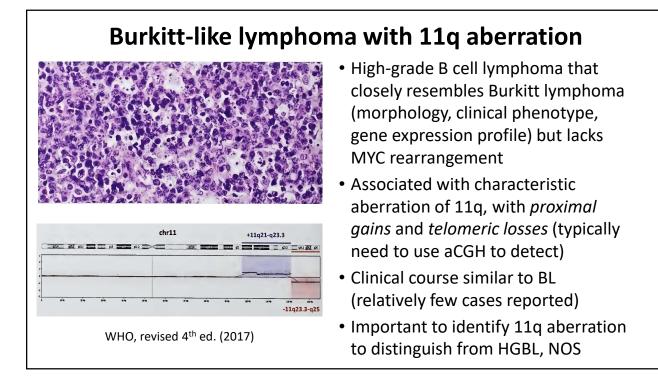

Outline


Since I couldn't possibly cover everything about molecular diagnostics of B cell lymphomas in 25 minutes, I will focus on practical applications that are (or will soon be) part of the standard of care for diagnosis and management of BCL:

- Molecular methods applied to diagnosis and classification of BCL (brief overview)
- Molecular diagnostics in management of *low-grade* B cell lymphomas
 CLL/SLL: prognosis, assessment of resistance to targeted therapy
 LPL: MYD88 and CXCR4 mutation
 HCL and HCLv: BRAF and MAP2K1 mutation
- Molecular diagnostics in management of *high-grade* B cell lymphomas
 - ➢ Cell-of-origin classification of DLBCL
 - Double- and triple-hit lymphomas
 - Identification of unique subtypes of high-grade lymphoma

Cell-of-origin classification in DLBCL Background


- WHO 2008 recognized molecular subgroups of DLBCL based on gene expression profiling (GEP): Germinal center B cell-like (GCB), activated B cell-like (non-GCB/ABC), and unclassifiable
- However, subclassification was considered optional because:
 - ➢ GEP not routinely available
 - ➢ IHC didn't "exactly correlate" with molecular categories
 - Didn't affect therapy
- Better understanding of molecular pathogenesis of GCB and non-GCB subtypes, and emerging impact on selection of treatment, led WHO to *require* cell-of-origin classification (as GCB or non-GCB) in 2016 revision


Large B cell lymphomas: double/triple-hit

- Gene rearrangements of BCL2, BCL6, and/or MYC identified in ~65% of large B cell lymphomas
- Double/triple-hit lymphoma MYC rearrangement + BCL-2 and/or BCL-6 rearrangement
 - > Patients are generally immunocompetent, middle-aged/older adults
 - Present with widespread disease and markedly elevated serum LDH
 - Very poor prognosis median OS 4.5 months (vs. 39.8 months for DLBCL, NOS) with nearly all patients dead within 8 months of diagnosis
 - May be benefit to more intensive upfront therapy (R-EPOCH or R-hyper-CVAD) over R-CHOP
 - Potential role for auto-SCT in relapsed/refractory disease
- Standard approach is to FISH for MYC rearrangement → reflex BCL2 and BCL6 FISH if positive

Large B cell lymphoma with IRF4 rearrangement

- Rare subtype of LBCL associated with *strong IRF4/MUM-1 expression* and *IRF4 gene rearrangement on 6p25*
- Most common in children and young adults; frequently involves Waldeyer's ring and/or cervical LN (less common: GI tract)
- Medium-sized to large neoplastic cells with open chromatin and small nucleoli
- Often "triple-positive" for CD10, BCL-6, and IRF4/MUM-1
 - > This immunophenotype should prompt screening for IRF4 rearrangement
- Rearrangement is cytogenetically cryptic and often missed on karyotype (requires FISH for detection)
- Good prognosis following immunochemotherapy +/- radiation
- Distinction from <u>pediatric-type FL</u> is essential (local management is sufficient for the latter)

