

Disclosure of Relevant Financial Relationships

Annette S. Kim, MD, PhD reported the following relevant financial relationship(s) during the content development process for this activity:

Consultant, LabCorp, Inc. *Research funding*, Multiple Myeloma Research Foundation

Assumptions and Agenda

Assumption: the basic principles of PCR and NGS as well as concepts of cfDNA/ctDNA have been covered in Day 1.

Agenda

- A. RT-PCR: CML and AML
- B. ddPCR : NPM1 in AML
- C. NGS with UMIs and error correction
- D. MDS and AML by NGS
- E. IGH and TCR by NGS
- F. cfDNA for lymphoid neoplasms

Molecular Milestones in CML Major Molecular Response (MMR): MR3 or 0.1% IS • - disease progression is uncommon once this level of cytoreduction has been achieved - 20-59% of patients achieve MMR within 1 year on imatinib - 60-80% of patients achieve MMR within 5 years on imatinib Deep Molecular Response (DMR) = at least MR 4 or < 0.01% IS - 35-68% of patients achieve DMR within 5 years EARLY TREATMENT RESPONSE MILESTONES^{i,j} BCR-ABL1 (IS) 3 months 6 months 12 months^k >10% YELLOW RED >1%-10% GREEN YELLOW >0.1%-1% GREEN LIGHT GREEN **≤0.1%** GREEN MMR Hochhouse et al. Leukemia. 2020; 34:966-984. NCCN Guidelines, CML, 2021

... That is the question

Table 8 Requirements for tyrosine kinase inhibitor discontinuation.

Mandatory:

- CML in first CP only (data are lacking outside this setting)
- Motivated patient with structured communication
- Access to high quality quantitative PCR using the International Scale (IS) with rapid turn-around of PCR test results
- Patient's agreement to more frequent monitoring after stopping treatment. This means monthly for the first 6 months, every 2 months for months 6–12, and every 3 months thereafter.
- Minimal (stop allowed):
- First-line therapy or second-line if intolerance was the only reason for changing TKI
- Typical e13a2 or e14a2 BCR-ABL1 transcripts
- Duration of TKI therapy >5 years (>4 years for 2GTKI)
- Duration of DMR (MR⁴ or better) >2 years
- · No prior treatment failure

Optimal (stop recommended for consideration):

- Duration of TKI therapy >5 years
- Duration of DMR > 3 years if MR^4
- Duration of DMR > 2 years if $MR^{4.5}$

Trial	Treatment Prior to Discontinuation	No. of Patients	Depth and Duration of MR Required for Discontinuation	Trigger to Resume TKI Therapy	Median Follow-up	Treatment-free Remission (TFR) Rate
STIM1 ²¹³	Imatinib ± interferon	100	MR5.0 for at least 2 years	Loss of MR5.0	77 months	38% at 60 months
TWISTER ²¹⁸	Imatinib ± interferon	40	MR4.5 for at least 2 years	Loss of MR5.0	103 months	45% (molecular relapse-free survival 45% at 8 years)
HOVON ²¹⁴	Imatinib + cytarabine	15	MR4.5 for at least 2 years	Loss of MR4.5	36 months	33% at 24 months
A-STIM ²¹⁵	Imatinib ± interferon	80	MR5.0 for at least 2 years	Loss of MMR	31 months	61% at 36 months
ISAV study ²¹⁶	Imatinib (after failure of interferon or hydroxyurea)	108	CMR for at least 18 months	Loss of MMR	36 months	52% at 36 months
KID study ²¹⁷	Imatinib ± interferon	90	MR4.5 for at least 2 years	Loss of MMR	27 months	59% at 24 months
Stop 2G-TKI ²¹⁹	Dasatinib/Nilotinib (first- or second-line)	60	MR4.5 for at least 24 months	Loss of MMR	47 months	54% at 48 months
DASFREE ²²⁴	Dasatinib (first- or second-line)	84	MR4.5 for 12 months	Loss of MMR	2 years	46% at 24 months
ENESTFreedom ²²⁰	Nilotinib (first-line)	190	MR4.5 for 12 months	Loss of MMR	96 weeks	49% at 96 weeks
ENESTop study ²²¹	Nilotinib (second-line)	126	MR4.5 for 12 months	Loss of MMR	96 weeks	53% at 96 weeks
DADI ²²⁵	Dasatinib (first-line)	68	MR4.5 for at least 24 months	Loss of MMR	23 months	55% at 6 months
DADI ²²²	Dasatinib (second-line)	63	MR4.0 for at least 12 months	Loss of MR4.0	44 months	44% at 36 months
EURO-SKI ²²³	Any TKI	758	MR4.0 for at least 1 year	Loss of MMR	27 months	50% at 24 months

Table 10. Summary of Limited Longer-Term Follow-up Data from the TKI Discontinuation Trials

Hochhouse *et al. Leukemia.* 2020; 34:966-984. NCCN Guidelines, CML, 2021.

1 NCCN Guidelines on APL						
Indication	Testing	Comment				
	t(15;17) by karyotype, FISH, or molecular	Prove the translocation				
At diagnosis prior to Induction	If morphology and clinical history is highly suspicious but testing is negative, consider the possibility of an APL variant					
D10-14 Induction	Recommended to NOT perform any studies	Morphologic and molecular studies may be misleading				
Post Induction	BM for documentation of morphologic remission	The presence of measurable cytogenetic or molecular markers does not carry prognostic or therapeutic implications				
Post Consolidation	PCR on PB to document mCR (does not specify quantitative or qualitative) (Should do earlier at 3-4 months during consolidation if on ATRA/As2O3)	If PCR+, repeat BM and PCR in 2- 4 weeks. If still positive = relapse 1. If negative, monitor q 3mo x 2y.				
During Maintenance (PCR- after Consolidation)	For high risk pts, PCR testing q3mo x 2y on PB, in the same lab with same sensitivity For low risk pts , monitoring may not be necessary	*BM is more sensitive, but recommendation for PB. If pt becomes PCR+, repeat BM and PCR in 2-4 weeks				
After Relapse Chemotherapy	For cases of documented morphologic remission by BM, PCR on BM to determine molecular status	Determines consolidation vs clinical trial, auto vs allo SCT decision				

Methods to increase analytical sensitivity of NGS

- Just get a LOT of reads (deep and ultra deep sequencing)
- Unique molecular identifiers (UMI, molecular barcodes)
- Error correction on a per nucleotide basis

- Noise (individual errors) can be introduced by PCR or by sequencing and can be difficult to separate from a true variant
- If a subset of reads with the same UMI have a change, then it is likely noise.
- If all reads with the same UMI have a change, then it is likely a true variant
- Clinical Utilization: MRD and chimerism

Methods to increase analytical sensitivity of NGS

- Just get a LOT of reads (deep and ultra deep sequencing)
- Unique molecular identifiers (UMI, molecular barcodes)
- Error correction on a per nucleotide basis

Agenda

Agenda

- A. RT-PCR: CML and AML
- B. ddPCR : NPM1 in AML
- C. NGS with UMIs and error correction
- D. MDS and AML by NGS

E. IGH and TCR by NGS

F. cfDNA for lymphoid neoplasms

